2/11390 A2

—

=

\..‘

(19) World Intellectual Prbpérty Organization

International Bureau

(43) International Publication Date

'lIIIIIIIIIIIIIIIIIIIIIIIIIIII[IIIIIlllIlIIIIII‘IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII |

(10) International Pu blication Number

Los Altos Hills, CA 94024 (US).

7 February 2002 (07.02.2002)- PCT WO 02/11390 A2
(51) International Patent Classification’: HO4L 29/00 (81) Designated States (national): AE, AG, AL, AM, AT, AU,
. AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CO, CR, CU,
(21) International Application Number: PCT/US01/23276 CZ, DE, DK, DM, DZ, EC, EE, ES, FI, GB, GD, GE, GH,
GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC,
(22) International Filing Date: 24 July 2001 (24.07.2001) LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW,
- . o ) MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK,
(25) Filing Language: English SL, TJ, TM, TR, TT, TZ, UA, UG, UZ, VN, YU, ZA, ZW.
(26)_ Publication Language: English  (g4) Designated States (regional): ARIPO patent (GH, GM,
L. ) : KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian
(30) Priority Data: : patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European
09/630,330 : 31 Ju]y 2000 (31.07.2000:) uUs patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE,
09”03,1 10 - 31 October 2000 (31.10.20“)) UsS IT, LU, MC, NL, P'r, SE, TR), OAPI patent (BF, BJ, CF,
(71) Applicant: ANDES NETWORKS, INC. [US/US]J; 2025 TG).
Stierlin Court, Mountain View, CA 94043 (US).
. Published: ]
(72) ln"ent;)rs: MATURANA, Guillermo; 2730 Belrose Av- —  without international search report and to be republished
enue, Berkeley, CA 94705 (US). NAIK, Ashish, V.; 1680 _ upon receipt of that report
Via Fortuna, San Jose, CA 95120 (US). ’ .
. . For two-letter codes and other abbreviations, refer to the "Guid-
(74) Agent: EINSCHLAG, Michael, B.; 25680 Fernhill Drive,  ance Notes on Codes and Abbreviations" appearing at the begin-

" ning of each regular issue of the PCT Gazette.

(54) Title: ENHANCING SECURE COMMUNICATIONS

01 203
Jal _ o Ve
- o0 | =N
5 T 5 i
|
0 B
1 = SSL* FUNCTION
) - /%’zos i -
3 l 3
i, RN

. 204

——
-3

(57) Abstract: Embodiments of the present invention provide method and apparatus that encrypt/decrypt messages sent over a net-
work rapidly, and which do no require large amounts of computational or memory resources. In particular, one embodiment of the -
present invention is a method for handling security in a communication between a first end and a second end involving a security
layer, a transport layer, and a network layer, which method includes steps of: (a) receiving network layer packets from the first

end of the communication, which packets contain information encrypted using security layer encryption processing; (b) decrypting

the encrypted information using security layer decryption; and (c) transmitting network layer packets toward the second end of the

communication, which packets contain the decrypted information.

BNSDOCID: <WO___0211390A2_|_>



WO 02/11390 ' PCT/US01/23276

Enhancing Secure Communications

~ This is a continuation-in-part of a patent application entitled ‘-‘State

Transition Strategy for Hand]i'qg Secure Communications,” Ser. No. 69/630330, filed

. July 31, 2000, and a continuation-in-part of a patent application entitled “Strategy for

5 Handling .Dropped Data in Secure Comrpunications,” Ser. No. 09/703,1 10 filed
October 31, 2000. |

Technical Field of the Invention

The present invention pertains to method and apparatus for handling

secure communications. In particular,l some embodiments of the present invention

10 relate to method and apparatus for handling secure communications in a non-proxy .

mode. In further particular; some embodiments of the present invention pertain to

method and  apparatus for Secure Sockets Layér (“SSL™) handlihg of secure
communications in a non-proxy mode.

Background of the Invention '

15 : A well known set of protocols, known in the art as Transmission
' Control 'Protocol/Intemet ’Pr_otocol (“TCP/IP”) protocols, govern most of an
interconnected public network known as the Internet. The TCP/IP protocols conform
to an Open Systems Etemational (“OSI”) layered hetwork descripﬁon wherein: (a)
layer 1 is a physical ‘laycr that transmits bits of information across a link (it deals with
20 problerﬁs such as size and shape of connectors, assignment of functions to pins,
conversion of bits to electrical signals, bit-level-synchronization, and so forth); (b)
layér 2 is a data link layer-that is responsible for transmiﬁing chunks of information
across a link (it deals with problems such as checksumming to detect data corruption,
" coordinating. the use of shared media, as in a local area network (“LAN”), and
25 addressing -- "Ethernet" is one well known example of a layer 2 protocol); (¢) layer 3 is
a network layer that enables any pair of systems in the network to communicate with
each other (it deals with problems such as route calculation, packet fragmentation and
re-assembly when differen-t links in the network have different maximum packet sizes,
and congestion control -- Internet Protocol (“IP”) is perhaps the most well known
30  example of :¢1 layer 3 protocol); (d) layer 4 is a transport layer that establishes a reliable

communication stream between a pair of systems (it deals with errors that can be

BNSDOCID: <WO__0211390A2_|_>



BNSDOCID: <WO,

20

30

WO 02711390 o , PCT/US01/23276

2

_introduced by the network layer, i.e., layer 3, such as lost packets, duplicated packefs,

packet reordering, and fragnientation and re-assembly so that the user of the transport

" layer can deal with larger-size messages, and so that less efficient network layer

fragmentation and re—assémb]y might be avoided — Transmission Control Protocol
(“TCP”) is perhaps the most well known example of a layer 4 protocoi); and (e) layers
5 - 7 have less cléar distinctions in practical nefwork implementations (collectively,
layers 5 — 7 cover the functionality of an operating system ahd dpplications, and as
such, are much less standardized than layers 1-4). These concepts are described in a
book entitled “TCP/IP Illustrated, Volume 1 — The Protocols” by W. Rlchard Stevens,
published by Addison-Wesley, 1994, and a book entltled “Interconnectlons Second

Edition Bridgers, Routers, Swntches, and -Internetworkmg Protocols” by Radia
Perlman, published by Addison-Wesley, 1999.

As is well known to those of ordinary skill in the art, a transport layer,
for examplevand without limitation, a layer 4 protocol such as TCP, deals with a
segment (a TCP segment) that comprises a tranéport (TCP) header and application
data, which application data will be referred to herein as a message or a payload. The
application data typically includes user data and an apphcanon header. As is further

well known to those of ordinary skill in the art, a network layer, for example and

- without limitation, a layer 3 such as IP, deals with a datagram that comprises a network

(IP) header and the TCP segment. As is well known to those of ordinary skill in the
art, due to restnctlons ofa layer 2 implementation, a layer 3 datagram must sometimes
be broken up into smaller units of data, i.e., fragments, each of which must be sent
separately across the physical wire. This might happen, for example, 1f an [P datagram
were too large to be transmitted over a particular layer 2 link. In this case, each
fragment would have a different IP header. Each such unit of transfer at the network
laye; level will be referred to herein as a packet. - Lastly, a link layer, for example and
without limitation, a layer 2 protocol such as Ethemnet, deals with a frame that
comprises a (Ethemét) header, an IP datagram, and a (Ethernet) trailer.

In a TCP/IP connection between a client and a server across a network
such as the Internet, information flow is bi-directional, i.e., each unit of \data \sent

across the network has a "sender" (for example, either a client or a server) and a

)___0211390A2_}_>



10

15

20

25

30

WO 02/1.1390 . - PCT/US01/23276

-3- :
"receiver” (for example, either the server or the client, respectively). As is well known

to those of ordinary skill in the art, some characteristics of the transmitted data are
linked to the client or server role in a transmission, regardless of the direction of
information transmlssmn and other characteristics of the transmitted data are linked to
the sender or receiver role, regardless of whether the sender was the client ‘or the
server. N _

The Internet is presently being used extensively for eCommerce, stock
transactions, and other transactions that require security and privacy. To pfovide such
security and privacy, most commercial websites use a security technology provided by
the Secure Sockets Layer (“SSL™) i)rotocol.

SSL is a separate protocol used just for security that is inserted between
TCP and the Hypertext Transfer Protoéol (“HTTP”). By acting as a new protocol, SSL
requires very few chéngés in protocols existing above and bélow it. In particular, an
HTTP application interfaces with SSL nearly the same way it would with TCP in the
absence of SSL. And, as far as TC_P is concemed, SSL is just another application using
its services. Thus, SSL provides a standardized method of adding. cryptographic

security functions to a TCP-based application such as a web browser. See a book by

- Stephen Thomas entlt]ed “SSL and TLS Essentials, Securmg the Web,” published by

John Wiley & Sons, Inc., 2000. ‘
The Internet Engineering Task Force (“IETF™ ietf.org) has taken the

‘SSL specification and standardized it in the Transport Layer Security ("TLS") open

standard. Further,.the Wireless Application Protocol (“WAP”) standards group has
formed a variant of the TLS standard called Wireless Transport Layer Security

(“WTLS), with some additional features for the wireless environment.

In this patent specification, the term SSL refers to any member of this
encryption family including, but not limited to, currently popular family members SSL
2.0, SSL 3.0, TLS 1.0, and WTLS 1.1. In addition, in this patent specification, the
term Transaction Sccurity refers t'o'the SSL family of encryption standards, as opposed
to Network Security as implemented by the IPSec standard. In particular, as used in

this patent specification, Transaction Security is performed above layer 4 in a layer

BNSDOCID: <WO___0211390A2_|_>



15

20

25

30

WO 02711390 PCT/US01/23276

A 4- 4
4/layer 3 stack (for example, a TCP/IP stack), whereas Network Security is performed

at layer 3 or below.

' The SSL protocol defines two different roles for communicating parties.
One system is always a client, while the other is a server; the SSL protocol requires the
two syétems to behave differently. The client is always the system that initiates a
secure communication, and the server responds to the client’s request. Since the client
initiates a communication, it has the responsibility of proposing a set of SSL options to
use for ihe exchange. The server selects from the client’s proposed options, deciding
which one the two systems will actually use. Although the final decision rests with the
server, the server can only choose from among those options ‘that the client has
originally proposed.
- Whenever SSL clients and servers communicate, they do so by -
exchanging SSL messages. As is well known to those of ordinary skill in the art, such
SSL messages include, in alphabetic order: (a) “Alert,” a message that informs the
other party. of a possible ' security breach or communication failure; (b)
“ApplipationDat.a,” a message that fefers to actual information exchanged by the two
parties ‘-exchange that is encrypted, authenticated, and/or verified by SSL; (¢)
“CertiAﬁcate,”» a message that carries the sender’s public key certificate; (d)
“CertiﬁcateReqdest,f’ a message from the server requesting the client to provide its
public key certificate; () “CertificateVerify,” a meésage from the client verifying it
knows the private key comresponding to its public key certificate; (f)
“ChangeCipherSpec,” a message to begin using agreed-upon security services (such as
encryption); (g) “ClientHello,” a message from the client indicating the security
services it desires and is capable of supporting; (h) “ClientKeyExéhange,” a message
from the client carrying cryptographic keys for the communications; (i) “Finished,” a
message indicating that all initial negotiations are complete and secure
communications have been established; (j) “HelloRequest,” a message from the server
requesting the client to start (or restart) the negotiation process; (k) “ServerHello,” a
message from the server indicating the security services that will be used for the
communications; (1) “ServerHelloDone,” a message from the server that it has .

completed all its requests of the client for establishing communications; and (m).

BNSDOCID: <WO__02113%0A2_|_>



.]0.

15

20

25

30

WO 02/11390 ' PCT/US01/23276

» : -5- .
“ServerKeyExchange,” a message from the server carrying cryptographic keys for the

communications. .

The SSL protocol does not exist in isolation. Rather, it depends on
additioqal, lower-level protocols to transport its messages between peers. In all
practical implementatioﬁs, the SSL protocol relies on the TCP protocol. It is critical
for the SSL protécol to receive TCP segments in the correct sequence, so it relies on

TCP to deliver segments in order. SSL can determine the beginning and end of its own

' messages without assistance from the transport layer. To mark these beginnings and

endings, SSL puts its own explicit length indicator in every message. This explicit
length indicator enables SSL to combine multiple SSL méssages into single TCP
segments. This conserves network resources, and increases efficiency of the SSL
protocol. ‘

~In one example of an SSL transmission across a TCP/IP network such
as the Internet, a.client (for example, a web browser on a personal computer) runs an
application that generates an SSL message to be sent to a server (for example, an
Internet web site running on the server). To send the message, the application sends
the SSL message to an SSL handler on the clierjt side of the transmission. The SSL
handler on the client side sends a complete SSL message to a TCP/IP stack routine
running on the client sidev of the transmission, which TCP/IP stack routine manages a
layer 4 queue and a layer 3 queue. The client side TCP/IP stack routine sends the SSL
message to the server. Depending on the particular implementation of the TCP/IP
stack routine, the SSL message may be broken up into one or rﬁore IP datagrams that
are sent individually through a network interface to the Internet. In a typical case, each
IP datagram is a single packet that is routed independently across the Internet using

standard layer 2 and layer 3 switching technology that is well known to those of

ordinary skill in the art. In this typical case, each packet arrives at a server network

interface card; and is detected by a TCP/IP stack routine running on the server side of

the transmission. As is well known in the art, the server side TCP/IP stack routine

" detects the arrival of each packet, and assembles the packets, in order, to form the

original TCP message. Then, the TCP message is passed to an SSL handler on the

BNSDOCID: <WO___0211390A2_I_>



BNSDOCID: <WO__¢

10

15

20

25

30

. WO 02711390 . : PCT/US01/23276

| -6-
server side of the transmission. The SSL handler on the server side waits until the

TCP/IP stack routine running on that machine has received the complete SSL message.

As is well known in the art, the SSL handlers on both the client and
server side of the communication are unaware of the details of layer 4 and below
transmission, including, for examp]e, the number of packets sent, the order in whlch
the packets were ‘sent, the transmission protocols used for the transmxssnon, the
occurrence of any dropped packets, any required re-sends of those packets, and so
forth.

-FI1G. 1 shows a diagram of a standard transmission between a client and

a server over a network in which agent 103 has been.inserted to perform an encryption

and decryption function according to an SSL family of security protocols. As shown ip '
FIG. 1, netwo_rk 102isa network, for example and without limiiation, a public network
commonly known as the Internet, and network 104 is a network, for exarnple and
without limitation, a private netwerk, most often existing inside a pﬁysically secure
building such as, for example and without'limitatidrg, a co-location facility. In
operation, ageni 103 receives encrypted traffic sent by client 101 through network 102,
_deerypts it, and sends it through network 104 to server 105. - Conversely, whenever
server 105 sends data through network 104 to aéent 103, agent 103 encrypts the data,
and sends it through network 102 to client 102. Note that unencrypted (i.e.,
"plaintext”) data appears on network 104. The function of agent 103 was historically
integrated into an application running on server 105, for example, an Apache web
server, but for perfonnance reasons (due to computatlonally intense cryptography), the
function of agent 103 was separated in the manner shown in FIG. 1. '

In current implementations of egent 103 performing SSL family
functions, there is a high performance and memory requirement for agent 103 because
the connection from agent 103 to client 101, and the connection from agent 103 to

server 105 are separate TCP/IP connections. This arrangement is referred to in the art

" as a "proxy-mode" SSL connection because agent 103 implements a fully-functional

TCP/IP stack in order to maintain these two connections. The performance
requirements of the complete system are high, and the total number of required,

simultaneously active connections is high.

0211390A2_|_>



10

15

20

25

30

WO 02/11390 ) PCT/US01/23276

-7-
FIG. 2 shows a schematic diagram of conventional information flow

from sender 201 to receiver 203. Note that sender 201 may be either a client or a
server in a network relationship. As shown in FIG. 2, SSL message handler 210 in
sender 201 forms an SSL message, and sends the SSL message to TCP/I]’ stack routine
206 of sender 201 (stack routine 206 is shown schematically to comprise a layer 4
queue structure and a layer 3 queue structure). TCP/IP stack routine 206 transmits
packets 204 out of 'a network interface (typically, an Ethernet adapter card) at sender
201 onto a network. Packets 204 are received by a network interface (typically, an
Ethemét adapter card) at prior art agent 202, and they are assembled and interpreted by
TCP/IP stack routine 207 running on agent 202 (stack routine 207 is shown

~ schematically to comprise a layer 4 queue structure and a layer 3 queue stfucture).

TCP/IP stack routine 207 combines packets 204 and resulting TCP segments to form
the complete SSL message, and passés the SSL message to SSL function 212 for

encryption or decryption (depending on whether the sender is a server or a client,

respectively). Next, SSL function 212 sends the resulting encrypted/decrypted
message to TCP/IP'Vstack routine 208 (stack routine 208 is shown schefnatically to
comprise a layer 4 queue structure and a layer 3 queue structure). In practice, TCP/IP
stack routine 208 may also serve as TCP/IP stack routine 207. TCP/IPV stack routine
208 transmits packets 205 out of a network interface at agent 202 onto a network.
Packets 265 are rec'ei'ved by a network interface at receiver 203, and they are assembled
and i‘nterp'reted by TCP/IP stack 209 running on réceiver 203 (stack routine 209 is
shown schematically to comprise a layer 4 queue structure and a layer 3 qhéue
structure). TCP/IP stack routine 209 combines packets 205 and resulting TCP
segmentsA to‘ form a complete SSL messagé 211.  Note that in this prior arf
i.mplementation, one or t\\'/o‘ complete TCP/IP stacks must be running on agent 202 to
implement the SSL functionélity. Also, because there may be many concurrent SSL
sessions being handled, and because packets for each session (shown as packets 204
and packets 205 in FIG. 2) are interleaved with those from other sessions, there must
be a large amount of memory present at agent 202 to support the many concurrent

sessions.

BNSDOCID: <WO__0211350A2_|_>



15

20

25

30

WO 02/11390 o PCT/US01/23276

-8-
At present, on a client, SSL is embedded in browsers such as, for

example, Netscape and Internet Explbrer. Evéry time a secure site is accessed by sucfl
a browser, an .SSL session with a server is established. Currently, 5 to 10 % of
eCommerce traffic is encrypted via SSL, and for a site like eTrade, 100% of registered
uscr service traffic is encrypted. Servers that support these sites can handle thousands
of standard http (non-encrypted) transactions per second, but when a secure transaction
is needed there is substantial overhead for the server. The overhead comes from
cstablishing an SSL session (this involves thousands of operations assoc‘iéted with
cryptography), and from encrypting/decrypting each message during an SSL session.
The overhead is such that servers’ throughput is reduced significantly.

| As discussed above, there are products currently on the market to
accelerate SSL transactions, which products decrypt an incomihg transaction, and send
it to the server "in the clear” (i.e., un-encrypted). Intel offers a “iPivot” box that is
claimed to proccss 200 SSL messages per second, and to increase server throughput by

a factor of 50. IBM offers é computer system hosting Rainbow cards that claims to

" provide 200 SSL messages per second per card. In spite of the above offerings,

securing Internct traffic remains inefficient.

As one can readily appreciate from the above, a need exists in the art for
method and apphrams that encrypt/decrypt messages senf over a network rapidly, and .
which do not require large amounts of computational or memory resources.

Summary of the Invention

Embodiments of the present invention advantageously satisfy the above-
identified need in the art and provide method and apparatus thét encrypt/decfyp;
messages sent over a network rapidly, and which do not reqliire large amounts of
computational or memory resources. '

In particular, one embodiment of the present invention is a method for
handling security in a communication between a first end and a second end involving a
security layer, a transport layer, and a network layer, which method comprises steps of:
() receiving network layer packets from the first end of the communication, which
packets contain information encrypted using security layer encryption processing; (b)

decrypting the encryptéd information using security layer decryption processing; and

BNSDOCID: <WO___0211390A2_{_>



WO 02/11390 ‘ : ' ~ PCT/US01/23276

_ ' -9-
(c) transmitting network layer packets toward the second end of the communication, .

which packets contain the decrypted information. In particular, a further embodiment
further comprises steps of: (a) receiving network layer packets from the second end of
the communication, which paékets contain information not encrypted using security .
5 layer encryption prbcessing; (b) encrypting the "information using security layer
encryption processing; and (c) transmitting network layer packets toward the first end
- of the communication, which packets contain the encfypted information.

Brief Description of the Figure

2

FIG. 1 shows a diagram of a standard configuration of a client-server
10 connection using a network in which an agent has been inserted to perform an
encryption and decryptiori ﬁmction according to an SSL family of éecup'ty protocols;

. FIG. 2 shows a schematic diagram of conventional information flow
from a sender to a receiver where an agent has been inserted to perform an encryption
and decryption function according to an SSL family of security protocols; |

15 _FIG.3 showé a schematic diagram of information flow from a sender to
a receiver in accordancé with‘ an embodiment of the present invention,; _ '
FIG. 4 shows a block diagram of an embodiment of an ihventive, non-
proxy-mode SSL system;
| FIG. 'S shows a block diagram illustrating how an embodiment of the
20 present invention changes seq and ack for messages transmitted between a client and a
server, ‘
| FIG. 6 shows, in pictorial form, session messages that are transferred
>between a client, an inventive, non-proxy-mode SSL system, and a server;
FIG. 7 shows a flowchart of operation for the embodiment shown in
25 FIG. 4; and
FIG. 8 shows a detailed portion of the flowchart shown in FIG. 7.
Detailed Description 7
FIG. 3 shows a schematic diagram of information flow from sender 201
to receiver 203 in accordance with one embodiment of the present invention. Note that
30 sender 201 may be either a client or a server in a network relationship. As shown in

FIG. 3, SSL message handler 210 in sender 201 forms an SSL message, and sends the

BNSDOCID: <WO____0211390A2_1_>



20

30

WO 02711390 . PCT/US01/23276 -

SSL message to TClP/IP stack routine 2061 (:)f sender 201 (stack routine 206 is shown
schematically to comprise a layer 4 queue structure and a layer 3 queue structure).
TCP/IP stack routine 206 transmits layer 3 packets 204 out of a network interface
(typically, an Ethemet adapter card) at sender 201 onto a network, for éxample and
without limitation a public-netWork such as the Internet. Layer 3 packets 204 are
received bya neﬁvork intqrface (typicél]y, an Ethernet adapter card)‘ at inventive, non-
proxy agent 301. In accordance with this embodiment of the présent invention, layer 3
packets 204 arriving at the network interface (not shown) of agent 301 are processed
individually to enable secure transmission (for example and without limitation, they v
are processed to perform encryptioh/decryption), and sent out onto a network, for
example and without limitation, a private network, as‘ layer 3 packets 302. As will be

described in detail below, layer 3 packets 302 are not necessarily identical to layer 3

. packets 205 described above in the Background of the Invention in conjunction with

FIG. 2. As was discussed above, in the Background of the Invention, since SSL’
functionality-is not sensitive to the operation of layers 4 and below, the fact that layer 3
packets 302 have different characteristics thaﬁ layer 3 packets 205 dqes not impact SSL
messages. Layer 3 packets 302 are received by a network interface at receiver 203, and
they are assembled and iﬁferpreted by TCP/IP stack 209 running on receiver 203. (stack
routine 209 is shown schematically to comprise a layer 4 queue structure and a layef 3
queue structure). ’fCP)IP stack routine 209 combines layer 3 péckets 302 and resulting
TCP segments to form a complete SSL message 211, which message 211 is identical to
message 211 obtained by the prior art implémentaﬁon described in the Background of
the Invention in conjunction with FIG. 2. - '

- In accordance with this embodiment of the present invention, inventive,
non-proxy agent 301 performs the following functions: (a) passes TCP connection

establishment messages from sender to receiver and vice versa (hence the designation

non-proxy agent), but records some of the exchanged information to provide a *“quasi-

- three-way” handshake; (b) i_ntercépts SSL session messages, and responds to the sender

to: (i) set up an SSL session between the sender and inventive, non-proxy agent 301 by
handling the SSL handshake and (ii) terminate an SSL session between the sender and

inventive, non-proxy agent 301 in response to SSL session termination messages; (c)

BNSDOCID: «<WO__0211390A2_1_>



10

15

20

25

30

WO 02/11390 PCT/US01/23276

-11-
intercepts bulk data transfer SSL messages from the sender to the receiver and

decrypts/encrypts messages (from client/server, respectively); and (d) passes TCP
connection terminatidn messages from sender to receiver and vice versa.

FIG. 6 éhows, in pictorial form, ‘siession messages that are transferred
among a client, an inventive, non-proxy-mode SSL sysfem, and a server, As one can
readily appreciate from this, TCP/IP connection establishment messages (which-
messages will be described in détail below) are shown to flow between the client and
the server through the inventive, non-proxy-mode agent (in a manner that will be

described in detail below) during phase 3000. SSL handshake messages (which

- messages will be described in detail below) are shown to flow between the client and
. the inventive, non-proxy-mode agent (in a manner that will be described in detail

'below) during phase 3010. Bulk encryption/decryption messages are shown to flow

between the server and the client and between the client and the server, respectively -

' (which messages will be described in detail below) through the inventive, non-proxy-

mode agent (in a manner that will be described in detail below) during phase 3020.
Lastly, TCP/IP connection termination messages (which messages will be described in
detail below) are shown to flow between the client and the server through the

inventive, non-proxy-mode agent (in a manner that will be described in detail below)

during phase 3030.

In accordance with this embodiment of the present invention, in
essence, inventive, non-proxy agent 301 receives all incoming network traffic, énd
intercepts SSL session-relafed traffic. In addition, in \accordance with this
embodiméﬁt, inventive, non-proxy agent 301 implements a higher-level security
pfotocol (for example and without limitation, an SSL family security protocol) on a
packet-by-packet basis (for example and without limitation, on a layer 3 packet by
layer 3 packet basis). In the prior art, security protocols are typically associated with
lbwer—layer security protocols such as IPSec (a layer 3 security protocol), or PPTP (a .

layer 2 security protocol): Advantageously, as will be described in detail below, a key '

"to the speed and fnemory—efﬁciency of embodiments of the present invention in

-handling SSL transactions is that such embodiments do not terminate a TCP

connection from either a client or a server as is believed to be the case for prior art

BNSDOCID: <WO__0211380A2_|_>



15

20

25

30

WO 02/11390 PCT/US01/23276

_ -12- : .
"proxy" mode firewalls such' as Intel's iPivot box, and so forth, Instead, as was

described above in conjunction with FIG. 3, inventive, non-proxy agent can act “like a
router,” and process each layer 3 (for example, IP layer) packet independently.
Advantageously, embodiments of the present invention pm\;ide order—of-magnitude
improvements in processing speed and memory requirements over those available in
the prior art. _ '

For the sake of understanding embodiments of the preseht invention, the
following terminology will be used: incoming traffic refers to traffic sent from a client
to a server (i.e., an "inbound" packet refers to a packet sent from a client to a server)
and outgoing traffic refers to traffic from the server to the client (i.e., an "outbound"
packet refers to a packet sent from the server to the client).

Before discussing s>peciﬁc details of an embodiment of the present

invention, the following overview will be given to enable one to better understand how

-such an embodiment operates.

‘ It is helpful to understand that, in a typical communication, inbound
traffic is light, i.e., just GET and POST requests from a browser (for example, "give
me my checking account history"), and outbound traffic is heavy, i.e., lots of actual
HTML page data. '

Pre-Filter _

Frames ai'e input to network interfaces at ‘an embodiment of the
inventive, non-proxy agent where a frame comprises, for example Aand without
limitation: (a) an Ethernet header; (b) aﬁ IP header; (c) a TCP header; (d) an SSL
header; (e) data; and (f) an Ethemet trailer. In accordance with tﬁis embodiment of the
present invention, the inventive, non-proxy agent examines frames to “pre-filter” them.
For example, this “pre-filter” step entails carrying out functions such as, for example,
and without limitation: (a) evaluating the checksum of the link (for example, Ethemnet)
layer, the IP layer and the TCP layer; (b) looking for logical errors (such as, for
example, inconsistent frame length, Ii’A length, and TCP header length); (c) determining
whether a frame is a non-IP frame; (d) determining whether the frame is a non-SSL

frame; and (e) determining whether a frame corresponds to a TCP frame. All of these

BNSDOCID: <WO___0211390A2_|_>



20

.25

30

WO 02/11390 _ PCT/US01/23276

-13-
individual “pre-filter” functions can be carried out using any one of a number of

methods that are well known to those of ordinary skill in the art.

In accérdance-with this embodiment of the present invention, if the .
frame (i.e., the link layer) contains, for example and without limitation, a logical error
(for example, an incomplete packet as‘ determined by an analysis of the link laS/erv
header) or an improper checksum, the frame may, for example and without limitation,
be dropped (i.e., no further processing is carried out, and the frame is not forwarded).
If the frame does not contain an IP packet, or a TCP segment, or does notip'ertain to
SSL, it is forwarded to the receiver without any further action being taken. |

TCP Connection Establishment and Termination

In general, as set forth in the following quote from page 231 of the book

‘entitled “TCP/IP Illustrated, Volume 1 — The Protocols” by W. Richard Stevens,

published by Addison-Wesley, 1994: -

' 1. The requesting end (normally called the client) sends a SYN
segmém specifying thé port number of the server that the client -
wants to connect to, and the client’s initial sequence number
(ISN, 1415531521 in .thisA example). This is segment 1.

2. The server responds with its own SYN segment containing'the
server’s initial sequence number (segment 2). The server also
acknowledges the client’s SYN by ACKing the client’s ISN plus
one. A SYN consumes one sequence number. v

3. The client must acknowledge this SYN from the server by
ACKing the server’s ISN plus one (segment 3). ‘ : '

These three segihents complete the connection establi;hment. This is

often called the three-way handshake.

In accordance with one embodiment of the present invention, if a frame
relates to TCP connection éstablishment, the inventive, non-proxy agent will forward
the frame to the receiver, but will also record certain TCP information relating to the
TCP connection and its establishment. '

Each TCP segment contains a 16-bit source port number and a 16-bit

'destination port number to identify the sending and receiving applicaﬁons. These two

BNSDOCID: <WO___0211390A2_1_>



10

20

25

30

WO 02/11390 ’ PCT/US01/23276

. -14-
values, along with a 32-bit source IP address and a 32-bit destination [P address in the

IP header, uniquely identify each TCP cohnectioh.

_ Thus, for a SYN TCP message (which TCP message is typically sent
from the client to the server, and which TCP message signals the start of the
establishment of a TCP connectioh), the recorded TCP infdrmation in general includes, |
for example and without limitation, a 16-bit source port number (from the TCP
header), a 16-bit destination port number (from the TCP header), a 32- bit source IP
address (from the IP headcr), a 32-bit destination IP address (from the IP header), and
an initial seq number chosen by the host (for example, the client) for the connection,

for example, X. As is well known to those of ordinary skill in the art, "seq" refers to a

32-bit TCP sequence number in the TCP header of a TCP segment, and "ack” refers to .

a 32-bit acknowledgment number in the TCP header of a TCP segment. Seq denotes
the byte number in the TCP message that correspo.hds‘ to the first byte in the data
portion of the transmitted segment), and ack denotes the byte number in the TCP
message that the récipient expects to receive as the first byte of the data portion of the
next TCP segment.

In respoﬁse to the SYN TCP connectioﬁ establishment message from
the client, the server will respond with a SYN-ACK TCP message. In this case, the

inventive, non-proxy agent will also forward the frame to the client, but will also

" record certain TCP information for the SYN-ACK TCP message (which TCP message

is typically sent from the server to the client), such recorded TCP information includes,
for example and without limitation, an initial seq number chosen by the server for the
connection, for example, Y, and an ack number X+1. The 16-bit source port number
(from the TCP header), the 16-bit destination port number (from the TCP header), the
32- bit source IP address (frdm the IP header), and the 32-bit destination IP address
(fro‘m the IP header) of the SYN-ACK TCP meésage should égree with that stored. for
the corresponding SYN TCP meséage because those parameters uniquely identify the
TCP connection. . ’

In resbonse to the SYN-ACK TCP message, the client will respond with '
an ACK message. In this case, the inventive, non-proxy agent will forward the frame

to the server, but will also record certain TCP information for the ACK TCP message,

BNSDOCID: <WO___0211390A2_I_>



WO 02/11390

PCT/US01/23276

-15-

such TCP information includes, for example and without limitation, an ack number '

Y+1.

In general, as set forth in the following quote from page 233 of the book

, entitled “TCP/IP Illustrated, Volume 1 — The Protocols” by W. Richard Stevens,
5 published by Addison-Wesley, 1994: '

10

20

25

_ While it takes three segments to establish a connection, it takes four to

terminate a connection. This is caused by TCP’s half-close. Since a
TCP connection is full-duplex ..., each direction must be shut down
independently. The rule is that either end can send a FIN when it is ’
done sending data. When a TCP receives a FIN, it must \notify the
application that the other end has tenninated that direction of data flow.

The sending of a FIN is normally the result of the application issuing a

. close.

The receipt of a FIN only means there will be no more data
flowing in that direction. A TCP can still send data after receiving a
FIN... |

We say that the end that first issues the close (e.g., sends the first
FIN) performs the active close and the other end (that receives this FlN)

- performs the passzve close. .

 When the server receives the FIN, it sends back an ACK of the
received sequence number plus one (segment 5). A FIN consumes a

sequence number, just like a SYN. At this point the server’s TCP also

' dehvers an end- of-ﬁle to the apphcatxon (the discard server) The

" server then closes its 'connection, causing its TCP to send a FIN

(segment 6), which the client TCP must ACK by incrementing the
received sequence number by one (segment 7).

In accordance with one embodiment of the present invention, if a frame

relates to TCP connection termination, the inventive, non-proxy agent will forward the

frame, for example, to the server, but will also record certain TCP information for a

30 FIN TCP message which signals the end of a TCP connection. Thus, for a FIN TCP

message, the recorded TCP information includes, for example and without limitation,

BNSDOCID: «<WO____0211380A2_1_>



15

20

25

30

WO 02/11390 ' . ‘ PCT/US01/23276

) -16- ’
the 16-bit source port number (from the TCP header), the 16-bit destination port

number (from the TCP header), the 32- bit source IP address (from the IP header), and
the 32-bit destination 1P’ address (from the IP heédei') so that the inventive, non-proxy
agent can mark the end of a particular connection. In response to the FIN TCP
message, the server will respond with an ACK TCP message. In this case, the
inventive, non-proxy agent will forward the frame to the client, but will terminate its
tracking of the TCP connection from the client to the servér. Similar messages will
terrninaté the TCP connection from the server to the client. 4

Note that, in accordance with one embodiment of the present invention,
all TCP connection establishment and términatiori messages are sent through the
inventive; non-proxy agént, and that the TCP connection has been set up directly
between the client and the servér. However, in order to implement the functions that
are described in detail below; the inventive, non-pr(;)xy agent maintains a subset of the
TCP connection information to define an internal “TCP Connection State.” An

embodiment of a TCP Connection State and the manner of its use in accordance with

" an embodiment of the present invention will be described in detail below.

There are many méthods that are well knbwn to those of ordinary skill
in the art for recognizingAthe various well known TCP connection establishment and
termination messages so that they can be processed in the manner set forth above.

SSI, Handshake | _

In accordance with this embodiment of the present invention, if a frame '
relates to the SSL handshaké protocol, the inveﬁti_ve, non-proxy agent will respond to
all such messages itself, and not pass such messages through to the server. As is well

known to those of ordinary skill in the art, SSL éom_pn'ses four (4) different component

protocols: (a) change cipher; (b) alert; (c) handshake;,and_(d) application data. The:

main opejation_s of SSL are: (a) to establish a secure session (this is accomplished by
the handshake and change cipher protocols); (b) to transfer encrypted data (this is
accomplished by the application data protocol); and (c) to handle é;rors (this is -
accqmplished by the alért protocol). See a bvok by Stephen Thomas entitled “SSL and
TLS Essentials, Secuﬁng the Web,” published by John Wiley & Sons, Inc., 2000.

BNSDOCID: <WO___0211390A2_1_>



10

15

20

25

30

WO 02/11390 , PCT/US01/23276

-17-
The handshake protocol comprises a series of phases that are well

known to those of ordinary skill in the art, but for purposes of understanding
embodiments of the present invention, it can be typically broken down into four (4)
phases: (phase 1) a “client hello” message; (phase 2) a “server hello” message, a server
certificate” message and a “server hello ‘done” message; (phase 3) a “client key
exchange” message, a “change cipher spec’ message, and a “finished” message; and

(phase 4) a “change cipher spec” message and a “finished”. message. In phase 1, the

_ client sends some random numbers and a set of ciphers it can handle. In phase 2, the

server decides on a particular cipher, and sends the client some random numbers and a
certificate ti)at contains the server’s public key. In phase 3, the client verifies the
server’s authenticity and sends back some encrypted information to set the keys, and
some encrypted authentication i'nformation.about the whole session. ‘After this, the
client sends all subsequent messages encrypted according to the agreed-upon cipher
parameters. Lastly, in phase 4, the server decrypts the information sent by the client
and authenticates the session. The server sends back to the client some encrypted
information to authenticate the session, and from this. point on, all subsequent
messages -are encrypted according to the agreed-upon cipher parameters. The most
time consummg component of this exchange for the server is the decryption of
messages sent by the client since it is encrypted with the server’s public key. For
example, for RSA this involves thousands of arithmetic operations on very wide

numbers. In addition to- encryption,' SSL enables an option of including message

_signatures (for SS.\L versions 3.0 and 3.1, message signatures are always included).

Operations on the alternative signing algorithms have similar data dependencies as
encryption, i.e., the packets have to be in order. -

As is well known to those of ordinary sk111 in the art, SSL supports
algonthms for a message authentication code (“MAC™). To calculate (or verify) the
MAC, a system uses a two-stage hash very similar to hash computations in the
handshake messages. It starts with a special value known as the MAC secret, followed -
by padding, a 64-bit sequence number, a 16-bit value with the length of the content,
and, ﬁnall'y, by the content itself. For the second stage, the system uses the MAC write
secret, padding, and the output of the intermediate hash. This result is the MAC value

BNSDOCID: <WO__0211380A2_1_>



. WO 0211390 ' . . PCT/US01/23276

20

25

30

-18-

“that appears in SSL messages. Two special values included in this calculation are the

MAC write secret and the sequence number. The sequence number is a count of the
number of messages the partif:S have exchanged. Its value is set to 0 with each
ChangeCipherSpec message, and it is incremented once for each subsequent SSL
Record Layer message in the session. A

The SSL specification also recogniie‘s that some of the information (in
particular, the key material) will be different for each direction of communication. In
olther. words, one‘set of keys will secure data the client sends to the server, and a
different set of keys will secure data the server sends to the élient. For any given
system, whether it is a client or a server, SSVL defines a write state and a read state. The
write state defines the security information for data the éystem sends, and the read state
defines the security information for data thaf the system recehives. Thus, each state has
a encryption algorithm, a write state encryption key, a read state encryptioﬁ key, a
message intcgn’ty. algorithm (abbreviated “MAC” for Message Authentication Code)
such as, for example and without limftaﬁdn, 'Secure Hash Algorithm (“SHA™) or
RSA’s Message Digest 5 (“MD5”), a write state MAC key, and a read state MAC key.

. ‘ thnevcré new client tries to connect to a secure server, the client and
server must execute the SSL Handshake protocol to agree onva cipher suite and session
keys to be used for the secure data transfer as well as to authenticate each other. Fora
server, this handshake typically involves two reads and two writes. In accordance with
this embodiment of the brescnf invention, all of the above is performed by the
inventive, non-proxy agent instead of the server. During the SSL handshake, among
other things, the inventive, non-proxy agent saves SSL information to define an “SSL
Connection State.” An embodiment of an SSL Connection State and the manner of its
use in accordance with an embodiment of the present invention will be described in
detail below.

. As is well known to those of ordinary skill in the art, SSL supports
stream ciphers and block ciphers. As is also well known, block ciphers are typically
sixty-four (64) bits wide (this is the case for DES and 3DES, which are the only block
ciphers used in SSL versions 3.0 and 3.1, and are used in a cipher block chaining

(“CBC”) mode. In particular, this means that encoding/decoding a block of data (for

BNSDOCID: <WO__0211390A2_|_>



BNSDOCID: <WO__

WO 02/11390 . PCT/USOI/23276A

10

15

20

25

30

-19- . _
example, each cipher specifies a standard block size) requires use of

encoding/decoding results from immediately previous block(s). Although a stream
cipher does not have such a dependency on the operatio'n for a previous block, there is
a dependency on the key. This requires that the inventive, non-proxy agent save this

type of information as part of its “SSL Connection State.” As is well known to those
of ordinary skill in the art; block ciphers usually require an initialization vector of
dummy data with wbich to begin the encryption proéess, i.e., the initialization vector
primes thq algorithm, and is determined as part of the SSL handshake in a manner that
is well known to those of ordinary skill in the art. ' ‘

There are many methods that are well known to those of ordinary skill
in the art for recognizing the' various well known SSL session messages so that they
can be processed in the manner set forth above. ’ ‘ '

The following describes one embodiment of SSL handshake processing
for the openssl implcmentation of SSL Version 3.0 handshake. In a first “server_re‘ad".
step, the agent receives a client_hello message from the client that lists a set of
proposed cipher suntes to be used during the session and a 32 Byte random number that
will be referred to below as the client random In a first “server_write” step,.the agent
sends a server_he'llo message 'selecting one of the proposed cipher suites and a 32 Byte
random number that will be refe_rred to below as the server random. In a second
“server_write” step (optional), the. agent seﬁd_é a sewef_certiﬁcate meslsage ‘

authenticating itself. In a third “server_write” step, the agent sends a message

. containing its signed pubhc key (the client will use this to encrypt its session key); the

public key is hashed and then signed using the agent s digital signature. This message
is not required if the server_certificate has its RSA public key for ‘encryption (a
common case). This message is required only if the following conditions are true: (a)
Diffie Hellman or Fortezza is used for key-exchange; (b) the server certificate is signed
using DSS; (c) RSA is used for key exchange, but the server certificate does not have
the RSA public key; (d) the agent is exporting the key exchange keys, and the kéys
specified in the server certificate enable strong RSA encryption; and (e) agent

authentication is not required. In a fourth “server_write”step (optional), the agent

0211350A2_|_>



10

15

20

25

30

WO 02711390, - ' ‘ PCT/US01/23276

-20-

sends a message requesting the client to authenticate itself. In a fifth “server_write”

step, the agent sends a server_done message indicating that it is done.

In a first “server_read” step, the agent receives the.client certificate, if
requested and verifies it. In a second “server_read” step, the agent receives the client
session key encrypted with the agent’s public key. The agent decrypts the key and
computes the master secret and the key material. In a third “server_read” step, the

agent receives the finished méssage encrypted with the session key. The agent

decrypts the messages and verifies that it is a hash of all the messages sent and

received thusfar.

In a first “server_write step, the agent sends a change_cipher_spec

'

‘message indicating that ahy messagé afterwards will be encrypted using the agreed

upon session key. In a second “server write” step, the agent sends a finished message
with a hash of all messages received thusfar, encrypted with the session key and

authenticated.

~TCP Packet Handling

In accordance with this embodiment of the present invention, to

properly enable a TCP connection between a client and a server when traffic passes

through the inventive, non-proxy agent, the inventive, non-proxy agent must modify
TCP sequence numbers, in both directions. This must occur since, as was described

above, the inventive, non-proxy agent, among other things, intercepts SSL handshake

‘messages (and does not pass them through to the server), and decrypts/encrypts déta in

SSL session hessages, thereby changing the amount of data contained in TCP packets. -
To understand how this 6ccurs, assume, fpr the sake of illustration, that "A" is a sender
(*A” could be a ciient or a server), and further assume, for the sake of illustration, fhat
"B" is a recipient. In accordance with normal TCP handling, "B" will send an ack
every now and then according to the rul_eé of its TCP/IP protoéol, which ack specifies’
the next byte of the TCP ﬁessage “B” is ready to receive. As was discussed above,
depending on the size of a TCP window, "A" may send 'multiplg packets withoﬁt
having received any acks. As is well known to those of ordinary skill in the art, this is
done to enable data to be transmitted on a steady basis. However, if at some point in

the future when a timer at ““A” expires since “A” has not received an ack, “A” will

BNSDOCID: <WO___0211390A2_I_>



10

15

20

25

30

WO 02/11390 ' PCT/US01/23276

21-
resend a packet whose payload starts from the byte in the TCP message corresponding

to the last ack “A” received.

Further assume that the inventive, non-proxy agent is situated in the

middle of the transmission between the client and the server. As each packet in the =

TCP connection goes by, the inventive, non-proxy agent adds/subtracts some number
of bytes; due to padding, this number is not a constant. Whenever an ack goes back to

the sender from the recipient, the inventive, non-proxy agent has to determine an

'appropriate offset for the ack in the TCP message so that the sender will send data

starting from the appropriafe position in the message. To further understand this,
assume that the inventive, non-proxy agent received a packet from the sender that
contained data corresponding to bytes 15 to 51 in the message (seq would equal 15 and

the message length would equal 37 bytes), and that the inventive, non-proxy agent only

 sent bytes 15 to 41 from the message to the receiver as bytes 7 to 33 (for example,

because inventive, non-proxy agent threw away 10 bytes).- In such a case, the

invéntive, non-proxy agent would change the message length to 27. In response, the
recipient would sent an ack which equals 34, i.e., the next byte it expected to receive.
However, .the sender has already sent byte 51 As a result, the inventive, non-proxy
agent needs to adjust the ack to equal 52. »

In addition, as. described above, in order to enable an SSL session, the
inventive, non-proxy agent must be mindful of the order of TCP packets, since
encryption requires aﬁ ordered stream (for example, as described above, this is reqtiired
by the CBC mode). The manner in which this is handled will be described in detail

below.

Routing

In accordance with this embodiment of the present invention, if a frame

relates to application data that is to be encrypted/decrypted according to paramctérs
established during the SSI; handéhake, angi then forwafded to the server/client,
respectively; the inventive, non-proxy agent will perform the appropriate
encryption/decryption, and forward the resulting information. As one can readily
appreciate, traffic that the inventive, nén-proxy agent decrypted on the way from the

client to the server must be encrypted using the same cipher suite on the way from the

BNSDOCID: <WO___0211390A2_|_>

i)



10

20

25

30

WO 02711390 PCT/US01/23276

-22- . :
server to the client. In essence, this means that both traffic directions must go through

the inventive, non-proxy agent. This can occur in accordance with any one of a
number of methods. For example, in one configuration, an embodiment of the
inventive, non-proxy agent is placed in front of a load balancer (a load balancer is an
apparatus that is well known to those of ordinary skill in the .art) which is, itself, in

front of a server to which secure transactions are to be directed. As another example,

‘the inventive, non-proxy agent spoofs the Internet frame address which appears in the

frame header in a manner that is well known to those of ordinary skill in the art to
indicate the source of a frame to be the inventive, non-proxy agent.

Non-Proxy Agent

The following describes one embodiment of the presént invention
which ié an inventive, nbn-_proxy agent.

FIG. 4 shows a block diagram of an embodiment of an inventive, non-
proxy, SSL system. As shown in FIG. 4, network interfaces 1001 and 1003 of
inventiveb, non-proxy, SSL system 1000 connect to client and -server networks,
respectively. Many ‘methods are well known to those of ordinéry -skill in the art for
fabricating network interfaces 1001 and 1003." In accordance with this embodiment of
the present invention, traffic flows bi-directionally between a multiplicity of clieﬁts and

servers, but for clarity and ease of understanding this embodiment of the present

. invention, inbound packet direction for a connection between a single client and server

is shown only. As shown in FIG. 4, link layer (layer i) traffic comes over a network,
for example and without limitaiion, a public network such as the Internet, into network :
interface 1001, and is passed to unit 1002. As should readily be appréciated by those
of ordinary skill in the art, network interfaces 1001 and 1003 handle layers 1 and 2 of a

network protocol. In accordance with this embodiment of the present invention, unit

1002 is embodied as a hardware logic unit that itself is implemented in a field-
programmablé gate array (“FPGA”), although other implementations are possible
including, for example and without limitation, a standard network processor unit
(NPU), a central processing unit (CPU), an application-specific integrated circuit
(“ASIC™), and so forth. ’ '

BNSDOCID: <WO___0211390A2_(_>



10

20

25

30.

WO 02/11390 PCT/US01/23276

-23-
In accordance with this embodiment of the present invention, unit 1002

perfonné a pre-filter function. In particular, it tags an incoming frame with, for
example, physical identifiers such as, input port number (used to route traffic), and
checks the incoming frame: (a) to determine whether the checksum is proper or
whether the frame is incomplete (if the checksum is improper, or the frame is
incompleté, the input is dropped); and (b) to determine whether the frame is a non-IP
or a non-SSL frame (if it is a non-IP or non-SSL frame, it is sent to a network interface
fo.r forwarding to the receiver). If the incoming frame passes the pre-filter function
performed by untt 1002, data contained'therein 1s forwarded to uni‘t 1004 for further
filtenng. This data comprises the TCP segment and will be referred to— as a TCP.
packet. :

In accordance with this embodiment of the présent invention, unit 1004
determines whether the TCP packet corresponds to Bulk data transfer (i.é., data
transfer between the client and server after the TCP connection and the SSL session
have been established). If unit 1004 determines that a TCP packet relates to Bulk data’
transfer for an existing TCP connection and an existing SSL session, the TCP packet is
éent to bulk encryplion/deéryptioh unit 1006 for processing. If not, because, for
example, the TCP packet relates to TCP connection establishment (between the client
and server), TCP connection fermination (for either the client or the server), SSL
handshake (between the client and inventive, non-proxy, SSL system 1000), or SSL
session termination, it is>.sent to CPU 1005 for processing. In accordance with this-
embodiment of the present invention, unit 1004 is embodied as a hardware logic unit

that itself is implemented in an FPGA, although other implementations are possible_

.including, for example, and without limitation, a standard network processor unit

~ (NPU), a central processing unit (CPU), or an application-specific integrated circuit

(ASIC).
' Unit 1004 makes the aboveQdeséribed determination, for example, by
referring to the .exislence of an entry in a connection table, implemented in one
embodiment as a “Client Hash Table® for an established TCP connection and an
established SSL session which relates to the TCP packet. In accordance with one

embodiment of the pfesent invention, the Client Hash Table is stored (storage may be

BNSDOCID: <WO___0211380A2_1_>



10

20

25

30

WO 02/11390 ' PCT/US01/23276

-24-
any one of a number of storage devices that are well known to those of ordinary skill in’

the art such as a memory device) in storage having shared access by unit 1004, unit

1006, and CPU 1005, which Client Hash Table is created in a manner that will be

~ described in detail below. In accordance with one embodiment of the present

invention, a retrieval key for theAClient Hash Table is a combination of the client IP
address (from the IP header) and client TCP port number (from the TCP header). In

accordance with this embodiment of the present invention, the entry in the Client Hash .

Table is made by CPU 1005 after the SSL handshake has been completed, and the

entry comprises a pointer to an entry in a “Buff TCP Control Block.” The Buff TCP

~ Control Block corhprises a TCP Connection State (see Table I which shows one

embodiment of a TCP Connection State) and an SSL Connection State (see Table II

which shows one embodiment of an SSL Connection State), which entry in the Buff

TCP Control Block is also made by CPU 1005 after the SSL handshake has been
" completed. The Buff TCP Control Block is stored in a storage device having shared

access by unit 1006 and CPU 1005 (the storage device may be any one of a number of

‘types of storagé devices that are well known to those of ordinafy skill in the art such as

- a memory device).

CPU .1 005 is a standard CPU running software that can ﬁandle TCP

-connection establishment, TCP connection termination, SSL handshake, SSL session

termination, and bulk data exchange. In one embodiment of the present invention,
CPU 1005 only handles *“‘corner cases” for bulk data exchange.

TCP Connection State

In acbordancc with one embodiment of the present invention, CPU 1005
proceéseé TCP packets to handle TCP connection establishment and termination. Each
TCP segment contains a 16-bit source port number and a 16-bit destination port.
number to identify the Vsending-arid receiving. applications, and as is well known to
those of ordinary skill in the art, thesé two values, along with a 32-bit_sovtlx'rce IP address
and a 32-bit destination IP address in the IP header, uni(]ixely identify each TCP
connection. o
. In accordance with one embodiment of the present invention, whenever

a client sends a secure message to a server, it accesses a predetermined destination port

BNSDOCID: <WO__0211390A2_I_>



10

s

20

25

30

WO 02/11390 PCT/US01/23276

-25-
number (for example and without limitation, 443, or some other predetermined

number). In this embodiment of the present invention, this fact may be used to identify
SSL messages. However, since SSL system 1000 decrypts messa.ges intended for the
server, it changes the destination port number whenever the decrypted counterparts are
forwarded to the server to a destination port number that has not been eaxlmarked to

receive encrypted messages (for example and without limitation, 8080, or some other

" predetermined number). Likewise, whenever the server sends messages to the client, it

does not send them to a port that has been earmarked to receive encrypted messages
because the sérver transmits its messages in plaintext to SSL system lOOO.‘ In one
specific embodiment, the server sends its messages to port 8080. However, since SSL
system 1000 encrypts messages intended for the client, it changes the destination port
number whenever the encrypted counterparts are forwarded to the client to a port
number that is earmarked to receive encrypted messages (for example and without
limitation, 443, or some other predetermined nutnber). . As a result, for such an
embodiment, the TCP connection is identified by the.32-bit source IP address, and the
16-bit source port number. ' _ S A
In ac'cordaﬁce with. one cmBodimeht of the present invention, CPU 1005 a

places an entry into a “Client Hash Table” in a storage device having shared access

“with unit 1004 and unit 1006 (the storage device may be any one of a number of types

of storage devices that are well known to those of ordinary skill in the art such as a

memory device). Each entry is reached by pfocessing a retrieval algorithm using the

- 32-bit source IP address and the '16-bit source port number of the TCP connection as a

retrieval ‘key. In accordance with one embodiment of the present invention, this

algon'thrh is a hash algorithm. The entry in the Client Hash Table is a pointer to a Buff

"TCP Control Block that includes a TCP Connection State and an SSL Connection

State. The Client Hash Table is set up by CPU 1005 after the TCP connection has

been established, and after the SSL session has been established. The Buff TCP .

Control Block is initially created by CPU 1005, and is stored in a storage device having
shared access with unit 1006 (the storage device may be any one of a number of types

of storage devices that are well known to those of ordinary skill in the art such as a

BNSDOCID: <WO___0211390A2_1_>



BNSDOCID: <WO__{

15

. 20

25

30

WO 0211390 ‘ : : PCT/US01/23276

-26-
memory device) for use in processing bulk data in the manner described in detail

below.

Table I shows information stored in a TCP Connection State for one
embodiment of the presént invention. As was discuésed above, in accordance with this
embodiment of the present invention, SSL system 1000 is a non-proxy agent and, as a

result, there is no need to store all of the information associated with a TCP

“connection. Thus, for each TCP connection, several variables are saved for each

direction of information flow, along with a pointer to an associated SSL Connection
State; the variables will Be described in detail below.

After the TCP Connection State and the SSL.Connection State have
been set up (see below),. and an entry has been created in the Client Hash Table, TCP -
packets are filtered in unit 1004. Unit 1004 does this by searching the Client Hash
Table for an entry comresponding to the client IP address and the client port to
determine whether a TCP connection and an SSL session have been established for the
TCP packet. If so, the TCP packet is sent to bulk encryption/decryption unit 1006
directly for processing --with no interaction by CPU 1005: Advéritageously, this
enhances the performance of SSL system 1000, because the data rate of TCP packets

entering SSL system 1000 is typically far greater than the capacity of CPU 1005 to

handle each TCP packet.
SSL Connection State

In accérdance with this embodiment of the present invention, an SSL »
session is established for every client~that requests a secure service through an SSL
handshake. In accordance with this embodiment of the present invention, and for ease
of understanding the present invention, SSL system 1000 maintains an SSL
Connection State that is independent of the TCP Connection State.

As was descnbed above, and as is well known to those of ordinary skill
in the art, a typical SSL session includes: (a) an SSL handshake (all of whose messages

are- described in detail in a book entitled "SSL and TLS Essentials, Securing the Web"

. by Steven Thomas, Published .by John Wiley & Sons, Inc., 2000) to establish the SSL

session; (b) then, a sequence of TCP paékets of application data, and (c) then, an SSL

Finish and possibly other messages to end the session. In accordance with this

0211390A2_I_>



10

15

20

25

30

WO 02/11390 ‘ PCT/US01/23276

: -27-
embodiment of the present invention, CPU 1005 handles the SSL handshake and

session termilnation, and then turns over the rest of the task of hahdl_ing the SSL session
bulk data transfef to unit 1006.

In accordance with one embodiment of the present invention, SSL
system 1000 preclu'deé the server from receiving data that has a bad signature. To do
this, whenever CPU 1005 detects a bad signature during SSL handshake, it sends an
SSL alert message to the élient to cause the client to close the connection. The closure
will not Be seen by the server, and the transaction will fail. '

CPU 1005 creates an SSL Connection State and stores it in Buff TCP
Control Block, storing a poin_tér to the SSL Connection State in the assdciated TCP
Connection State. The SSL Connection State is stored in a storage device that is
shared with unit 1006 (the storage device may be any one of a number of types of
storage devices that are well known to those of ordinary skill in the art such as a
membry device). 'Further, whenever, the SSL handshake is complete, the SSL
Connection State is associated with the TCP Connection State, and an entry is made ir;
the Client Hash Table with a pointer to the TCP Connection State.

An example of an SSL Connection State for one en;bodiment of ‘the
present invention is shown in Table II, some of the entries in SSL Connection State for
this embodiment of the present invention include: (a) Cipher Code; (b) read state

Cipher Key; (c) write state cipher key; (d) hash algorithm code (MAC); (e) read state

- MAC secret; and (e) write state MAC secret. The remaining entries will be described

in detail below.

In accordance with fhis embodiment of the present invention, whenever
an SSL alert, or any-other SSL protocol-level message, is detécted in a TCP packet by
unit 1004 filtering, the TCP packet is sent to CPU 1005 for processing. _ '

CPU 1005 will end an SSL session if it detects TCP coﬁnection
termination messages following an SSL. Alert message.

Bulk Data |

In accordance with one embodiment of the present invention, unit 1006

performs encryption/decryption on application data for an SSL session. In accordance

with this embodiment of the present invéntion, unit 1006 is embodied as a hardware

BNSDOCID: <WO___ 0211390A2_]_>



15

20

25

30

circuit (ASIC).

WO 02711390 PCT/US01/23276

_ -28-
logic unit that itself is implemented in an FPGA, although other implementations are

possible including, for example, and without limitation,. a standard network processor

unit (NPU), a central processing unit_‘(CPU)', or an application-specific integrated '

In accordance with this embodiment of the present invention, unit 1006

accesses the SSL Connection State and the TCP Connection State to aobtain

‘information needed to perform the encryption/decryption function, and to obtain

information needed to modify the TCP state seq and ack numbers in the manner
described above. After tHat, the decrypted/encrypted and modified TCP packet is
incorporated into a frame, and the frame is forwarded to the appropriate one of the
server/cﬁent, respectively. V _ _ ' h

~ SSL system 1000 must order TCP packets, since, as was described
above, encryption/decryption requires an ordered stream (for example, this is required

by the CBC mode). Thus, if SSL system 1000 receives TCP packets out of order, they

- cannot be forwarded.  There are at least two options for handling this situation. A first

option is to drop out-of-order packets, and wait for them to be resent in order. This
first option is advantageous since it reduces buffering. In time, the receiver’s TCP

layer routines will request a resend since, as far as they are concerned, the out-of-order

‘packets will-appear to. have been dropped. A second option is to buffer the TCP

packets, and to wait for a TCP packet that should have been sent previously to be
resent. This second option requires buffering, and as a result, is more complex than the

first option. In accordance with one embodiment of the present invention, the first

. option is implememéd in unit 1006.

As is well known to those of ordinary skill in the art, é TCP packet can
contain any number of SSL messages, or it may cpntain a piece of an SSL message.
As was described above, TCP packets are sent to unit 1006 for brocessing. In
accordance with this‘ embodiment of the present invention, whenever a TCP packet
contains one SSL message, the ‘bulk application data processing is handled by unit
1006. On the other hand, whenever unit 1006 determines that an inbound TCP packet
contains a portion.of an SSL message (in practice, this determination is méde for the

first inbound TCP packet of the SSL message), or more than one SSL message, unit

BNSDOCID: <WO___0211380A2_|_>



10

15

20

.25

30

WO 02/11390 PCT/US01/23276

20
1006 will forward the inbound TCP packet to CPU 1005 for bulk application data

processing. In addition, unit 1006 will set a “punt” bit in the Client Hash Table.
Whenever unit 1006 processes an inbound TCP packet, it will check the Client Hash
Table for the particular connection, and examine its “punt” bit. If the “punt” bit is set,
unit 1006 will forward the inbound TCP packet to CPU 1005 for processing. In this
manner, in one such embodiment, CPU 1005 can gather multiple inbound TCP packets

together in order to provide one SSL message. After CPU 1005 has received the entire

‘SSL message, processed it, and forwarded it to the servér, it will clear the “punt” bit so

that unit 1005 may resume normal operation. In another such embodiment, CPU 1005
groups the information in the inbound TCP packets in order and groups the
information into blocks. Then, CPU 1005 can process the information, on a block by

block basis, to generate TCP packets that it will send to the server to speed up

transmission. In this casé, whenever the last TCP packet relating to the SSL message

arrives, it will contain the signature (if one is used for the particular version of SSL). 'If
the signature is bad, CPU 1005 can cause the session to be droppéd in the manner
described herein.

A In accordance with this embodiment of the preéent invention, in general,
whenever any condition causes unit 1006 to send a TCP packet to CPU 1005 for
processing (see above), unit 1006 will send all subsequent traffic comiﬁg from the
same sender to CPU 1005 for processiﬁg to make sure, for example, that TCP packets -
forming an SSL message are processed in order. If thi_s were not done, processing of
subsequent TCP packets by unit 1006, fnight_get out of order since unit 1006 (if
embodied in logic) might operate faster than CPU 1005. Normal processing of TCP

packets from the particular sender by unit 1006 can resume whenever CPU 1005 |

catches up with the sender (this is guaranteed to occur because of the TCP window size

ﬁ.mctidnality which will inhibit the sending of TCP ﬁackets if the sender’s window has-

been filled by unacknowledged packets). To effectuate this coordination, as was -

described above, whenever unit 1006 forwards a TCP packetv to CPU 1005, it will set
the “punt” bit in the Client Hash Table. Further, whenever a TCP packet arrives, and
unit 1006 accesses the Client Hash Table for a pointer to the TCP Connection State for

the associated connection and finds the “punt” bit set in the Client Hash Table, it wili

BNSDOCID: <WO___0211390A2_I_>

vk
[



BNSDOCID: <WQ___{

15

20

25

30

WO 02/11390 ‘ . PCT/US01/23276

30- ,
forward the TCP packet to CPU 1005 for processing. In addition, whenever CPU 1005

catches up, it will reset the punt bit so that unit 1006 will resume processing TCP.
packets from the particular sender.

In a case where one outbound plaintext message spans multiple TCP

- packets, since outbound TCP packets are plain text, instead of waiting to form one SSL

message (as would occur in a prior art, proxy mode agent-with SSL running on a
TCP/IP stack of the server), unit 1 006 can create a separate-SSL message for each TCP
packet (without waiting to receive the entire plainteﬁ(t message). As a result, the client'
will receive more SSL headers and trailers than it would if there were one SSL
message. .Nevertheless, the client will still assemble the TCP packets into a single SSL
message. Thus, the abplication (for.example, a web browser) receives the exact same. '
data it would have received if the TCP packets were collected to enable a single SSL
message to be formed (this is because the SSL code in the client strips off the
headers/trailers, and passes the payload up to the applieation layer). Consequently,

instead of receiving 16 Kbytes of data wrapped in one SSL message, the client receives

~ten (10) 1.5 Kbyte TCP packets each wrapped in an SSL message Advantageously,

such an embodlment of the present mvent10n eliminates the need to buffer the whole

message (to be able to calculate-an SSL ]ength, the SSL length is in the SSL header)

before sending the first TCP packet. Note that this approach ,Of sending through TCP _
packets as they arrive and not waiting to obtain an entire SSL message may also be
used in a proxy-mode agent.

As 1s well known to those of ordinary skill in the art processing TCP
packets (for example encryption) in the outbound direction increases the size of the
TCP packets. As a result, this could produce fragmentation, or multiple segments.
Multiple segments are problematic because they may end up complicating the non-
proxy behavior of SSL system 1000. |

. As set forth in the following quote from page 233 of the book entitled
“TCP/IP Illustrated, Volume 1 — The Protocols” by W. Richard Stevens, puvblished by
Addlson-Wesley, 1994:

The maxnmum segment size (MSS) is the largest “chunk” of data that

TCP will send to the other end. When a connection is estabhshed, each

.

0211390A2_)_>



WO 02/11390

15

20

PCT/US01/23276

31-
end can announce its MSS. The values we’ve seen have all been 1024.

The resulting IP datagram is normally 40 'byteé larger: 20 bytes for the
TCP header and 20 bytes for the IP header.

Some texts refer to this as a “negotiated” option. It is not
negotiated in any way. When a connection is established, each end has

the option of announcing the MSS it expects to receive. (An MSS

_ option can only appear.in a SYN segment.) If one end does not receive

an MS option from the other end, a default of 536 bytes is assumed.
(This_default allows for a 20-byte IP header and a 20 byte TCP header
to ﬁt. into a 576 Byte Ir datagra‘m.)

In general, the larger the MSS the better, until fragmentation
occurs. (This ,fnay not always be true. ...) A larger segment size allows
mc;re dataA té be sent in each segment, amortizing the cost of the IP and
TCP headers. When TCP sends a SYN segment, either because a local
application waﬁts to initi.ate a connection, or when a connection request
is received from another host, it can send an MSS value up to the A
outgoing interface’s MTU, minus the size of the fixed TCP and IP
headers. For an Ethernet this implies an MSS of up to 1460 bytes.
Using TEEE 802.3 encapsulation (Section 2.2), the MSS could go up .to
1452 bytes. | o _

One solution is to -adjus't the MSS ,advefﬁsed by the client by

subtracting, for example and without limitation, thirty-three (33) bytes from it in

accordance with the method disclosed ‘in patent- appliéation entitled “"Opﬁrﬁizing

- Layer I/ Layer J Connections in a Network Having Intermediary Agents, Ser. No.

25 09/560;951 Filed April 27, 2000, which application is commonly assigned with the

present application and which application is incdrporated herein by refércnce. For

example, in accordance with this method, this number is the size of an SSL header (5),

plus the maximum signature size (20), plus an allowance for padding (8). In

accordance with this embodiment of the present invention, adjusting MSS is performed

30 at TCP connection establishment, and is performed by CPU 1005.

BNSDOCID: <WO___0211380A2_I_>



BNSDOCID: <WO__|

15

20

25

30

WO 02711390 - ) PCT/US01/23276

: : -32-
SSL system Flowchart
FIG. 7 shows a flowchart of operation of SSL system 1000 shown in’

'FIG. 4. As shown in FIG. 7, messages are received by, and sent from, SSL system

1000 using a network interface. A méssage received by a network interface at box
4000 of FIG. 7, is passed to box 4010 of FIG. 7 for pre-filtering. At box 4010, if an
crror in the frame is deteéte_d, the TCP packet is dropped; if the frame is a non-SSL

‘frame, control is transferred to box 4000 so a network interface can send the TCP

packet onto the network to the appropriate destination; otherwise, control is transferred
to box 4020 of FIG. 7. At Box 4020, the Client Hash Table is accesséd to detet'm‘i'ne
whether a TCP connection and an SSL session have been set ltp for this TCP packet. If
s0, control is tﬁnsfcrrcd to box 4030 of FIG. 7, otherwise, control 1s transferred to box
4025 of FIG. 7 for further analysis (the operation of box 4025 is described below in
con_]unctlon wnlh FIG. 8).

At box 4030, the SSL header and the TCP sequence number of the TCP
packct are examined. If the TCP packet contains an SSL alert message, or an unusual
messagé. or a TCP connection termination meésage, control is transferred to. box 4025
of FIG. 7, tathcrwisc, control is transferred to box 4040 of FIG. 7. At box 4040 the
TCP Conncction State and the SSL Connection State are retrieved (m a manner
described in detail herein), and control is transferred to box 4050 of FIG. 7. At box
4050, the bulk data encryption/decryption process is carried out. If a decryption error

‘or a signature error is detected, control is transferred to box 4025 of FIG. 7, otherwise,

control is transferred to box 4060 of FIG. 7. At box 4060: (a) the TCP Connection
State and the SSL Connection State are updated (in a manner described in detail
herein); (b) the seq number, the ack number, and the port number of the TCP packet
are adjusted (in a manner described in detail herein); (c) the checksum for the TCP
packet is recomputed; and (d) control is transferred to box 4000 so a network interface
can send the TCP packét onto the network to the appropriate .destinétion.

FIG. 8 shows a detailed ﬁowchart of the operation of box 4025 shown

in FIG. 7. As shown in FIG. 8, control ié transferred to box 4100 whenevér an entty"

does not exist in the Client Hash Table for a particular TCP packet. At box 4100, TCP

connection establishment is processed and SSL handshake is performed (in a manner

0211390A2_|_>



10

15

20

25

30

WO 02/11390 : , a PCT/US01/23276

described in detail herein). After that, con3t$ol is transferred to box 41 10 of FIG. 8. At
box 4110, a determination is made to see whether the TCP connection establishment
and the SSL handshake were succéssful. If so, control is transferred to box 4130 of
FIG. 8, otherwise, control is trénsferred to box 4120 of FIG. 8. At box 4120, an SSL
alert message is sent to the client, followed by TCP connection termination messages.
At box 4130, a TCP Connection State and an SSL Connectioﬁ Staté are created, and an
entry is made in the Client Hash Table. . '

As further shown in FIG. 8, control is transfe;red to box 4150 whenever

. an SSL alert message, or an unusual message, or a TCP connection termination

message is received. At box 4150, the SSL alert message is processed, large SSL
messages are processed, or session termination messages are processed.. ' ‘

As still further shown in FIG. 8, control is transferred to box 4170
whenever there is a decryption errbr or a signature error. At box 4170, TCP reset

messages are sent to the server, and an SSL alert message is sent to the client. -

‘ Physical Implementation

In accordance with one embodiment of the present invention, SSL

system 1000 is implemented as a blade/card that can plug into a host system, can

process from about 2000 (SSL messages)/sec to about 5000 (SSL. messages)/sec, and '

can decrypt messages at line speed. In addition; blades/cards can be combined in a
four blade/card system that can process from about 8000 (SSL messages)/sec to about
20000 (SSL messages)/sec. In accordance with the presént invention, use of inventive,
SSL system 1000 relieves a server of all SSL processing so that it can simply service
plain HTTP requests. Advantageously, inventive, SSL system 1000 can be placed as a
“bump in the wire” somewhere in front of the server, most likely'in front of an Internet
traffic manager (ITM), also known in the art as a load balancer. This configuration has

at least three important benefits.. The first benefit is that it can service SSL traffic for

several servers, with-no need to modify either the server's hardware configuration, or to

change the server's software in a significant ;vay.' The second benefit arises from the
fact that the ITM will see traffic in the clear. As a result, the ITM can make more

intelligent decisions to provide overall improvement to the site. The third benefit

‘arises from the fact that the inventive, SSL system is not a proxy agent (i.e., it does not

BNSDOCID: <WQ___0211390A2_|_>

P e



" WO 02711390 PCT/US01/23276

10

20

25

30

: -34-
establish connections; it merely modifies existing connections), so that TCP traffic is

modified on the flight. This reduces buffering requirements, and enables the most time
consuming aspects of SSL, namely SSL handshake and bulk encryption, to be

accelerated, for example, in hardware.

~ Bulk Application State Machine

QOverview A

FIG. 5 shows a general case wherein: (a) client 2000 sends a packef
with TCP sequence number seq fo SSL system 1000; (b) SSL system 1000 decrypts the
data and (for the reasons described in detail above) changes the TCP sequence number
from seq to seq’; and (c¢) SSL system 1000 sends the altered TCP packet to server
2010. . In addition, as shown in FIG. 5, (a) server 2010 sends a packet with TCP
acknowle.dgment number ack’ to SSL system 1000; (b) SSL system 1000 encrypts the

data and (for the reasons described in detail above) _chianges the TCP acknowledgment

number from ack’ to ack; and (¢) SSL systcrh 1000 sends the altered TCP packet to

~client 2000.

As one can readily appreciate from this, SSL system 1000 does not

control correspondence between TCP packets sent and acknowledgments received. As

a result, in accordance with one embodiment of the present ixjvention, SSL system
1000 étores an ack offset (i.e., the difference between the acknowledgment number,
ack’, in the TCP packet sent from the receiver, for example, the server, and the
acknowledgment number, ack, corresponding io ack’ that SSL system 1000 will send
to the sender, for example, the client) for each TCP packet it has forwarded to the
receiver, for example, the> éerver. As one_ of ordinary skill in the art can readily
appreciate, SSL system 1000 would need to store this ack offset to enable it to modify
any ack’ that it may receive from the receiver, for example, the sefver. In such an
embédiment, whenever SSL system 1000 receives an ack’ from, for example, server
2010, SSL system 1000 takes this as an indication to free ﬁp memory of all stored
offsets before that point, i.e., prior to ack’. There would be an exception to this
however, i.e., whenever the TCP ack packet SSL system 1000 sends back to client
2000 gets droppéd. -Methods for dealing with this situation are described below.

BNSDOCID: <WO____0211390A2_I_>



. 20

25

30

WO 02/11390 - . PCT/US01/23276

-35-
In an alternative of this embodiment, the number of outstanding TCP

packets (i.e., TCP packets that have been sent from SSL system 1000 to, for example,
the server, but for which no acknowledgment has been received by SSL system 1000)
can be limited. In practice, as has been described above, the limit is a function of the
number of TCP packets that can fit into a TCP window. Thus, whenever the TCP
window is filled, no data gets sent, and SSL system 1000 will have an opportunity to
catch up. Although SSL system 1000 can have control over the size of the TCP
wir{dow (for example, by spoofing the window size option), there still may be many
small TCP packets that go through SSL system 1000 which require storage of many
ack offscts. In such a case, in accordance with such an embodiment, once a TCP ack
offset table overflows its n entries (for example and without limitation, n=16), SSL-
system 1000 could cohpensate by dropping TCP packets. 4

- The following describes further embodiments of the present invention
that are driven by the fact that, in accordance with the TCP protocol, a previously sent
TCP packex may be resent. For example, whenever a TCP packet is droﬁped (for
example, the TCP packet is lost beﬁveen SSL syétem 1000 and the client or between

SSL system 1000 and the server), in accordance with the TCP protocol, that event will

~be detected eventually (for example and without limitation, because timers expire in a

manner that is well known to those of ordinary skill in the art). Then, in accordance
with the TCP protocol, a previously sent TCP packet will be resent (this action being
referred to herein as a "rewind"). To properly deal with such “rewinds” that occur as a
natural consequence of the TCP protocol, these further embodiments need to be able to -
“rewind” the TCP sequence numbers (i.e., the seq and its corresponding seq’ or the ack
and its corresponding ack’), and they need to be able to “rewind” the
encryption/decryption of the messages as well. As one can readily appreciate from the
above, there is a need to “rewind” the TCP sequence numbers to have the proper
translation of a received seq to seq’ or the proper translation of a received ack’ to ack,
respectively. In addition, as one can readily appreciate from the above, there is a need
to “rewind” the encryption/decryption of the mességes to be able the encrypt/decrypt

the resent TCP packet.

BNSDOCID: <WO___0211390A2_I_>



10

20

25

30

WO 02711390 PCT/US01/23276

-36-

Inventive “Rewind Methods”

- One issue in implementing the “rewind” function that must be kept in

" mind is that SSL generates a relatively large encryption state for a stream cipher such

as, fo; example, the RC4 variable-key size stream cjpher. For example, for RC4, the
encryption state comprises a 256-byte encryption state plus two (2) a_dditionai bytes for
other infoﬁnation that is well known to those of ordinary skill in the art, see a book
entitled “Applied Cryptography, Second Edition, Protocols, Algorithms, and Source
Code in C” by Bruce Schneier, John Wiley & Sons, 1996, Chapter 17, pp. 397-98.

- As is well known to those of ordinary skill in the art, for a stream
cipher, the keystream is independent of the plaintext. Thus, for a stream cipher such as
RC4, given the RC4 state of a particular byte in a message, one can compute the.RC4

state (and the key) for any other byte in the message given just its position with respect

to the 'parpicular byte. In otﬂer words, if one knows the RC4 state of a byte Bl iﬁ a

sequence of encrypted (or decrypted) messages, then the RC4 state (and the,kéy) can be
computed for any other byte B2 in the message, given the position of byte B2 relative

to the position of byte B1 in the message, i.e., (position(B2) - position(B1). Of course,

: one would have to subtract all bytes in the message that are not encrypted such as, for

example, bytes in SSL headers from (position(B2) - position(B1). The impor_taht thing

1o note, therefore, is that the computation of the RC4 state (and the key) is independent

of the message itself. ‘

This is illustrated as follows. First, to initialize the RC4 state: (a)
initialize an S-box by filling it linearly So =0, Sy =1, ....., Sass = 255; (b) set two bytes
Si and Sj to 0; and (c) fill a 256-byte array with the key, repeating the key as necessary
to fill the entire array Ko, K, ..... , Kass. The key is five (5) bytes for export or as much
as 16 bytes for other uses. Then perform the foliowing: V

_ im0 ,

fori=0 to 255; 7

i=(+S;+K;) mod 256

Swap S; and S;. »

Then, to generate a random byte, perform the following:‘

Si=(Si + 1) mod 256

BNSDOCID: <WO___0211380A2_{_>



BNSDOCID: <WO__

WO 02/11390 ' ) PCT/US01/23276

10

15

20

25

30

-37-
Sj = (Sj + Ssi) mod 256

swap S; and §;
=(S; + S;) mod 256

K S,

Then, the byte K is XORed with the plaintext to produce cnphertext or
XORed with the ciphertext to produce plamtext

A “saved state” is encryptlon/decryption state information (also referred
to herein as a cipher state) that is necessary and sufficient to enable SSL processing
(i.e, encryption/decryption) of a TCP packet. The “saved state” can be “rewound”
using the RC4 rewind algorithm starting with a “saved state” to obtain the “saved
state” of, for example, a retransmitted packet. The RC4 rewind algorithm is:

swap Sg; and Sg;

= (Sj - Ssi +256) mod 256

Si=(Si-1+256) mod 256

For a block cipher such as, for exampie, the DES or. 3DES block
ciphers, since the encryption state is not independent .of the message, one cannot

“rewind” without the data (as was noted above, encoding/decoding a block of data

requires use of encoding/decoding results from immediately previous block(s)).

However, for the DES and 3DES block ciphers, the encryption state is only eight (8) -
bytes per block in each direction of transmission. - ‘
“Rewmd Method I”

In accordance with one embodxment of the present invention, SSL

system 1000 updates a decryptlon state as each' TCP packet is processed (those of

~ ordinary skill in the art will readily appreciate that the foilowing applies as well to a

direction of transmission requiﬁng encryption). For example, using' RC4, SSL system
1000 buffers (or stores) the 256-byte decryption state at all TCP packet boundaries, or,
altemative]y,.it buffers (or stores) the actual 'decrypted data.. These data are buffered
(or stored) along with the seq and seq’ correspondence ‘data. To understand how
“Rewind Method I" works, assume, for the sake of tllustration, that: (a) four (4) TCP
packets have been received by SSL system 1000 from, for example, client 2000; (b)
SSL system 1000 has performed decryption, using, for example, RC4, on these TCP

0211390A2_I_>



10

15

20

25

30

WO 02711390 . " PCT/US01/23276

packets ‘in succession; and (¢) SSL systen3181000 has, therefore, updated and buffered
(or stored) the decryption state, for example, the 256-byte decryption state, (or
alternatively, the decrypted data) for each. Assume further that TCP packet number 3
is dropped between SSL system 1000 and server 2010, and, as a result, that client 2000
resends TCP packet number 3 because client 2000 has not received an
acknowledgment before a timer expires. In accordance with “Rewind Method I, SSL
system 1000 “rewinds” ie., decrybts, TCP packet number 3 by: (a) (where the 256-byte
decryption state is buffered (or stored) at all TCP i)acket boundaries) decrypting the
resent TCP packet from the decryption state; or (b) (where the actual decrypted data is
buffered (or stored)) retrieving the actual decrypted -data. ‘ ‘

“Rewind Method II” .

To handle dropped or lost TCP packets, and to retransmit those dropped
or lost TCP packets, SSL system 1000 buffers (or stores) information described below;
which information is buffered (or stored) in a TCP Connection State (see Table I which
shows one embodiment of a TCP Connecti.on State) and an SSL Connection State (see
Table I which shows one embosliment of an SSL Connection State). As described

above, the TCP Connectien State and the SSL Connection State are stored in storage, -

for example, a storage unit such as memory, that is accessible to CPU 1005 and unit

1006 shown in FIG. 4. Further, as was described above, the Client Hash Table has a
pointer which points to the TCP Connection State, and as sho'in in Table I, the TCP
Connection State has a pointer to the SSL Cpnnectibn State.

Variable InBackSeqPair represents a pair (InBackSeq, InBackSeq') of
TCP sequence numbers for the next expected seq number after the last TCP packet for
which an acknowledgment was sent from SSL sysfem 1000 to the client (i.e.,
InBackSeq = seq [of the last TCP packet 'for‘which an aeknowledgment was sent] plue
its length). InBackSeq is the TCP sequence number of a TCP packet as it weuld be
received by SSL system 1000 from the client, and InBackSeq’ is the TCP sequence
number of the TCP packet as it would be sent from SSL system 1000 to the server.
The variable InBackSeqPair is also referred to as a “backup state.”

A “saved state” is encryption/decryption state information (also referred

to herein as a cipher state) that is'necessary and sufficient to enable SSL processing

BNSDOCID: <WO___0211390A2_|_>



1S

20

25

30 .

WO 02/11390 _ , PCT/US01/23276

-39- .
(i.e., encryption/decryption) of a TCP packet. The “saved state™ for the “backup state™

is the “saved state” for a TCP packet whose first byte has a TCP sequence number
equal to InBackSeq. -

Variable InMaxSeqPair represents a pair (InMaxSeq, InMaxSeq') of
TCP sequencé numbers for the next expected seq number after the last TCP packet
SSL system 1000 sent to the server (i.e., InMaxSeq = seq [of the last TCP packet SSL
system 1000 sent to the server] plus its length). InMaxSeq is the TCP sequence
number of a TCP packet as it would be received by SSL system 1000 from the client,
and InMaxSeq’ is the seq number of the TCP packet as it would be sent fron{ SSL
system 1000 to the server. The variable InMaxSeqPair is also referred to as the
“forward state.” The “saved state” for the “forward state” is the “saved ;state” for a
TCP packet whose first byte has a TCP sequence number equal to InMaxSeq.

Variable OutLastAck' is the largest outgoing ack number SSL system
1000 received from the server. .

As one can readily appreciate, the above-described variables correspond
to operations concerning transmission from a client to'a server. Similar variables,
having similar meaning, ﬁre shown in Table I, and correspond to transmission from the
server to the client. ‘

For this embddiment, the ““saved states” for the “backup state™ and the

“forward state” for the incoming and outgoing directions of transmission are stored in

" the SSL Connection State (see Table II).

The followiﬁg relations will always be true between the above-
described variables for a given direction of transmission: |

InBackSeq' < OutLastAck' <InMaxSeq'

InBackSeq < InMaxSeq

InBackSeq > InBaékSeq' and InMaxSeq > InMaxSeq'

Based on thése variables, a TCP Connection State can only be in one of
tﬁe following states:
State 1: InBackSeq' = OutLastAck' = InMaxSeq'

 This state, denoted CAU (caught up), occurs whenever SSL system

' 1000 has received an ack from the server for every TCP packet that SSL system 1000

BNSDOCID: <WO___0211350A2_1_>



BNSDOCID: <WO__1

20

25

30

WO 02711390 : ' ' ' PCT/US01/23276

-40- - |
has sent it thusfar. Thus, the server is caught up with the client. As a result, SSL

system 1000 can update the “backup state” to refer to the TCP packet most recently
sent to the server. Because SSL system 1000 knows the server has already received the
last TCP packet SSL system 1000 sent, there is no situation in which SSL system 1000
w1ll have to re-decrypt data earlier in the connection.

State 2: InBackSeq' = OutLastAck' < InMaxSeq'

This state, denoted NAC (No Ack), occurs whenever SSL syste_m 1000
has not received any acks for any TCP packets it sent since it was in the CAU state
(i.e., since receiving the last ack). This means that the server is backed up. If SSL
system 1000 receives a retransmission from the ‘ciient in this state, there is a good'
chance that a TCP packet and/or an ack got lost between SSL system 1000 and the
server. ' , ' '

State 3: InBéckSeq' < QutLastAck' < InMéxSeq'

" This, stafe, denoted by SAC (Some Ack), is a "steady state” and occurs
whenever the server sent an ack for some of the TCP packets it received from SSL
system 1000, but not all. On receiving a retransmission from the client while in this
state, SSL system 1000 will advance the “backup state” until it reaches: (a) a CAU
state (if no TCP packets are lost), or (b) a NAC state (if some TCP packets are lost or if

the server is backed up).

" State 4: ‘InBackSeq' < OutLastAck' = InMaxSeq'

In accordance with this embodiment of the present invention, as soon as
a connection reaches this state, SSL system 1000 will set (InBackS_eq, InBackSeq") to
(InMaxSeq, InMaxSeq’) to drive it to the CAU state. This means that the “backup
state” becomes the last sent TCP packet.

As is well known to those of ordinary skill in the art, a typical SSL
message includes a message, a signature; and padding. In order for the message to be
decrypted for transmission from SSL system 1000 to the server, the entire SSL
message .must be decrypted using an appropriate encryption/decryption .a]gorithm
determined duriAng SSL handshake (for example, see Table II) and an appropriate
Cipher State to determine the padding length. Using the padding length, the signature

and the message can be identified. Next, the signature can be authenticated using an

0211350A2_|_>



10

15

20

25

30

‘WO 02/11390 PCT/US01/23276

‘ -41-
appropriate authentication algorithm determined during SSL handshake and

appropriate keys (for example, see Table II). Lastly, the authenticated message can be -
sent to the server as plaintext. Conversely, in order to encrypt a plaintext message for
transmission from SSL system to the client, SSL system computes a signature using the

appropriate authentication algorithm and the appropriate keys (for example, see Table

II), pads the message and signature, adds a padding length, and encrypts the entire SSL.

message ﬁsing the appropriate encryption/decryption algorithm and the appropriate
Cipher State.

- In accordance with one embodiment of the present invention, two lkinds
of inputs can change the state of a connection in SSL system 1000: (a) an outgoing ack
in a TCP packet, or (b) an incéming TCP packet. * Tables III and IV show state
transitions generated by a state machine for inbound traffic (the state machine for
outboﬁnd traffic is equivalent); which state transitions -occur in respénse to each of
these kinds of inputs separately. Many methods are well known to those of ordinary
skill in the art for implementing such a state machine. In addition, in accordance with
the further embodiment of the present invention, all state transitions due to acks will be
handled in unit 1006. |

The following provides some explanations to help in understanding the

manner in which the state machine works.

Table I
| Before describing each state transition in detail in conjunction with
Table IT1, the following provides an overview.

Whenever an outgoing message containing an Ack’ is received by SSL
system 1000 from the Server, SSL.system 1000 replaces the Ack’ with the sequenée
number of the .“backhp state” (i.e., InBackSeq) or the sequence number of the “forward
state” (i.e., InMaxSeq). SSL system 1000 may also update its internal state, and may
updafc the value of the last Ack’ it received so far from the server (i.e., OutLastAck’).
State transitions possible upon receiving an Ack’ are: -

1. NAC = CAU or SAC = CAU: if SSL system 1000 receives an

Ack’ for the last information sent (i.e., corresponding to the *“forward state™), then SSL

BNSDOCID: <WO___0211390A2_|_>



10

20

25

30

WO 02/11390 PCT/US01/23276

-42- :
system 1000 collapses the “backup state” to the “forward state” and advances the

internal state to CAU.

2. NAC = SAC: If SSL system 1000 receives an Ack’ for some,
but not all of the TCP packets that it has sent to the server, it advances its' state to SAC,
and updates the value of the last Ack’ that it has received. |

The following describes each state transition in Table 1 in detall
o Case 1: Ack’ refers to information in a TCP packet for whlch
SSL system 1000 has already sent an acknowledgment to the client. SSL system 1000
sends the packet to the client, and sets the ack number to InBackSeq, the next seq
number tnat SSL system 1000 expects aftet the “backup state.”

Case 2: Ack’ refers to information in a TCP packet that SSL
system 1000 is expecting next. SSL system 1000 sends the TCP packet to the client,
and sets the ack number to InBackSeq, the next seq number that SSL system 1000
expects aﬁer the “backup state

Case 3: Ack’-- refers to information that was not sent to SSL
system 1000. This is an erroneous packet since the server is acknowledging data that it

has not received. SSL system 1000 sends the TCP packet to the client with the same

. error. That is, it sets the ack number to InBackSeq offset by the same amount that

Ack’ exceeded InBackSeq’. Then, when the client receiyes this, it will detect the error
and take appropriate steps to correct it. o

Case 4: Ack’ refers to information that has already been
acknowledged by SSL system 1000 to the ciient (Ack’ < InBackSeq’). SSL system
1000 transmlts the TCP packet, and sets the ack number to InBackSeq, the next seq
number that SSL system 1000 expects after the “backup state.”

Case S: Ack’ refers to information for which SSL system 1000
has not yet received an acknowledgment, and for which SSL system 1000 has not yet
sent an acknowledgment to the client. A transition is made to SAC. OutLastAck’ is
updated to Ack’. .Then, SSL system 1000 transmits the TCP packet to the client, and
sets the ack number to InBackSeq. SSL system 1000 reverts to InBackSeq because it
can decrypt the packet with seq number InBackSeq (SSL system 1000 would use the

“backup state” information stored in the SSL Connection State). If SSL system 1000

BNSDOCID: <WO.__0211380A2_1_>



15

20

25

30

WO 02/11390 : PCT/US01/23276

-43-
were to set the ack number in the TCP packet to the ack number corresponding to

Ack’, and tﬁe packet got lost and was later retransmitted, SSL system 1000 would not
be able to decrypt it. _ | |

Case 6 - Ack’ refers to the next seq number that SSL system 1000
e*pects to receive from the client after the “forward state.” This means that the server
has acknowledged receipt of all information sent by SSL system 1000 to the server. A
transition is made to CAU, the “forward state” becomes the “baqkup state,” and SSL

system 1000 transmits the TCP packet to the client with the ack number set to

InMaxSeq, the next seq number that SSL system 1000 expects to receive from the

. client after the “forward state.”

Case 7: Ack’ refers to information that SSL system 1000 has not

yet sent (this is just like case 3, an erroneous packet). However, a transition is made to -

CAU, the “forward state” becomes the “backup state,” and SSL system 1000 transmits -

the TCP packet to the client with the ack number reset to the seq number expected after
the “forward state” offset by the same amount that Ack’ exceeds InMaxSeq’. '
Case 8: Ack’ refers to information in a TCP packet for which
SSL system 1000 has already sent an acknowledgment to the client. SSL system 1000
sends tbe packet to the client, and sets the ack number to InBackSeq, the next seq

number that SSL system 1000 expects after the “backup state.”

Case 9: Ack’ refers to information in a TCP packet that SSL
.system 1000 is expecting next after the “backup state. " SSL system 1000 sends the

TCP packet to the client, and sets the ack number to InBackSeq, the next seq number

that SSL system 1000 expects after the “backup state.”

Case 10: Ack’ refers to information for which SSL system 1000
already received an acknowle;dgment. SSL éystem 1000 transmits the TCP packet to
the client, and sets the ack number to InBackSeq. SSL system 1000 reverts to
InBackSeq bécause it can decrypt the packet with seq number InBackSeq (SSL system
1000 would use the “backup state’ information stored in the SSL Connéction State). If
SSL system 1000 were to set the ack number in the TCP packet to the ack number
corresponding to Ack’, and the packet got lost and was later rétransmitted, SSL system

1000 wduld not be able to decrypt it.

BNSDOCID: <WO___0211390A2_{_>



BNSDOCID: <WO___

20

25

30

WO 02/11390 » . PCT/US01/23276

ACasc 11: - Ack’ refers.‘tl: information for which SSL system 1000
has not yet received an acknowledgment, and for which SSL system 1000 has not yet
sent an acknowledgment to the client. OutLastAck’ 1s updated to Ack’. Then, SSL
system 1000 transmits the TCP packet to the client, and sets the ack number to
InBackSeq. SSL- system 1000 reverts fo InBackSeq because it can decrypt the packet
with seq number InBackSeq (SSL system 1000 would use the *backup state”
information stored in the SSL Connection State). If SSL system 4l 000 were to set the
ack number in the TCP packet to the ack number cormresponding to Ack’, and the
packet got lost and was later retransmitted, SSL system 1000 wbuld not be able to
decnyptat. _ | A | ‘

Casc 12: Ack’ refers to the next seq number that SSL expects to

receive from the client after the “forward state.” A transition is made to CAU, the

. “forward state™ becomes the “backup state,” and SSL system 1000 transmits the TCP

packcet to the client with the ack number set to InMaxSeq, the next seq number that
SSL system 1000 expects to receive from the client after the “forward state.” .
Case 13: . Ack’ refers to mformatlon that SSL system 1000 has not
yet sent (this is just like cases 3 and 7, an erroneous packet). However, a transition is
made to CAU. the “forward state” becomes the “backup state,” and SSL system 1000
transmits the TCP packet to the client with the ack number reset to the seq number
expected after the ‘fforward state,” offset by the same amount that Ack’ exceeds

InMaxSeq’.

- Table IV

Before descnbmg each state transition in detail in conJunctlon with
Table IV, the following provides an overview. ‘

Whenever an incoming message containing encrypted data is received
by SSL system 1000 from the client, it could belong to one of the following categories:
(a) a new, in-order packet; (b) a new, out-of-order packet; (c) a complete, in-order
retransmit (i.e., it contains no. new data); (d) a partial, in-order retran_srriit (i.e., some
old data and some new data); and (e) an out-of-order retransmit.

SSL system 1000 determinés the category of an incoming TCP packet

by comparing the packet’s sequence number with the sequence numbers of the

0211390A2_|_>



10

20

25

30

WO 02/11390 v : PCT/US01/23276

-45-
““forward state’™ and the “backup state.” Out-of-order packets are dropped in

accordance with this embodiment of the present invention, but could be reassembled in
alternative embodiments. In-order packets are processed using the “backup state” (i.e.,

InBackSeq) if it is a retransmit, or using the “‘forward state” (i.e., InMaxSeq) if it is a

new packet. The state transitions possible upon receiving an incoming TCP packet are:

, 1. SAC = NAC: if SSL system 1000 receives a retransmit of a
packet that has been Acked by the server (but not by SSL system 1000 to the client), ‘
then SSL system 1000 transitions from the SAC to the NAC state.

' 2.  CAU = NAC: On arrival of a new, in-order packet, SSL

'system 1000 transitions from the CAU state to the NAC state.

The following describes each state transition in Table IV in detail.
Case 1: Seq refers to information for which SSL system 1000 has

already received an acknowledgment from the server and sent the acknowledgment to

~ the client. This retransmit was probably caused By a loss of an Ack seht by SSL

system 1000 to the client, and hence, the subsequent retransmission by the client. SSL
system sends a ReACK request to the server (see Note 2 following Table IV). The

ReACK request causes the server to resend an. acknowledgment, which

. acknowledgment is passed to the client.

Case 2: Seq refers to new, in-order information that SSL system
1000 has not yet received. SSL system 1000 processes the information (i.e., decrypts it
and verifies the signature), and sends the decrypted information to the server. Also, it

updates InMaxSeq to the next expected sequence number, and changes the state of the .

system to NAC.

Case 3: Seq | refers to new,. but out-of-order information. In
accordance with this cmbodirhent of the present invention, SSL system 1000 drops this
information. -

Case 4: This case is handled in the same manner that case 1 is
handied. ‘

Case 5: Seq refers to a retransmit of information that SSL system
1000 processed earlier, but for which SSL system 1000 has not yet received an ack.

This information may be lost between SSL system 1000 and the server. SSL system

BNSDOCID: <WO___0211390A2_|_>



20

25

30

WO 0211390 | " PCT/US01/23276

. -46-
1000 processes the information and sends it to the server. However, SSL system 1000

does not update the “backup state” because it has not yet received an ack for this
packet. -
' Case 6: Seq refeys to retransmitted information, but not the next
expected information. Since SSL system 1000 does not have the SSL connection state '
information to enable it to be processed, as a result, the retransmitted information 1s
simply turned into a ReACK request to update OutLastAck’ (i.c., the last Ack received
by SSL system 1000). _

| Case 7: - Seq refers to new, in-order inf_ormation;' This case is

handled in the same that case 2 is handled.

Case 8: This case is handled in the same manner that case 3 is .
handled. _ ' '

Casé 9: This case is handled in the same manner that cases 1 and
4 are handled. R

Case 10: Seq refers to a retransmission of information that SSL

S);stem 1000 processed -earlier, and for which information SSL syétem 1000 has
received an ACK from the server. SSL system 1000 processes the information, and
advances the “backup state” (i.e., InBackSeq, h1BackSeq’) to th\e new information. If
the value of seq’ plus the length of the decrypted information is equ-al to the last ack
received (i.e., OutLastAck’), the SSL system 1000 state is updated to NAC, otherwise,
SSL system 1000 continues to be in the SAC state.

| Case 11: Seq refers to a retransmission- of information for which
.S_SL system 1000 has not yet received an ack from the server. This case is handled in
the same manner that case S is handled. -

Case 12: This case is handled in the same manner that case 6 is

handled. '

Case 13: This case is handled in the same manner that cases 2 and
7 are handled.

Case 14: This case is handled in the same manner that cases 3 and

8 are handled.

BNSDOCID: <WO__0211390A2_{_>



WO 02/11390

BNSDOCID: <WO____0211390A2_I_>

PCT/US01/23276

-47-
Table I
TCP Connection State
InBackSeq InBackSeq’
Inéoming . InMaxSeq InMaxSeq’
OutLastAck’
OutBackSeq’ A OutBackSeq '
Outgoing | OutMaxSeq’ OutMaxSeq
InLastAck’
Pointer to associated SSL Connection State

Table II‘
SSL Connection State

Cipher Code ] ‘ '
- Read stat ,
Encryption/Decryption ead state Cipher Key

Cipher State (“saved state”)

i Write state Cipher K.
(Incoming backup state) rite state Cipher Key

Cipher State (“saved state”)
(Incoming forward state)

Cipher State (“saved state”)
(Outgoing backup state)

Cipher State (“saved state™)
(Outgoing forward state)

'Hash Algorithm Code
(MAQC)

SSL Seq Number for Read state MAC secret
Backup '

SSL Seq Number for Write state MAC secret
Forward




WO 02/11390. PCT/US01/23276
_48-
Table I
Ack Transition Table
Ack’ is the acknowledgment number received by SSL system 1000.
Cur. Value of Ack’ Next Update Ackin TCP | Outputto
State State InBackSeq, Header Network
InMaxSeq,
QutLastAck
1 CAU Ack’ < CAU None Ack = InBackSeq Send
, InBackSeq’ ' _ :
2 CAU Ack’ = CAU None Ack = InBackSeq Send.
InBackSeq’ '
3 CAU Ack’ > CAU None Ack = InBackSeq Send
' 1 InBackSeq’ + (Ack’ —
' InBackSeq’) .
4 NAC Ack’ < NAC None Ack = InBackSeq Send
InBackSeq’ ‘
5 NAC Ack’ > SAC | OutLastAck’ = | Ack =InBackSeq Send
InBackSeq’, | Ack’
and Ack’ <
InMaxSeq’
6 NAC Ack’ = CAU | InBackSeq’ = | Ack=InMaxSeq Send
InMaxSeq’ InMaxSeq’ = :
QutLastAck’
Update “‘saved
state”
7 NAC Ack’ > CAU | InBackSeq’ = | Ack=InMaxSeq Send
InMaxSeq’ InMaxSeq’ = + (Ack’ —
OutLastAck’ InMaxSeq’)
Update “saved '
state”
8 SAC Ack’ < SAC None " Ack = InBackSeq Send
- InBackSeq’ - :
9 SAC Ack’ = SAC None Ack = InBackSeq ‘Send
, InBackSeq’
10 | SAC Ack’ < SAC None Ack = InBackSeq Send
OutLastAck’ e
11 | SAC Ack’ > SAC | OutLastAck’= | Ack =InBackSeq Send
QutLastAck’, Ack’
and Ack’ <
InMaxSeq’

BNSDOCID: <WO___ 0211390A2_|_>




BNSDOCID: <WO___0211380A2_I_>

‘WO 02/11390

Cur.

Value of Ack’

-49-

Table III continued

Ack Transition Table

PCT/US01/23276

State

12 | SAC

Ack’ =

"CAU

Next
State

Update
InBackSeq,
InMaxSeq,

QOutLastAck

Ack in TCP .

Header

Output to
Network

13 | SAC

InMaxSeq’

- Ack’ >

CAU

InBackSeq’ =
InMaxSeq’ =
OutLastAck’
Update “saved
state”

Ack = InMaxSeq

Send

InMaxSeq’

InBackSeq’ =
InMaxSeq’ =
QOutLastAck’

Update “saved

state”

Ack = InMaxSeq
. +(Ack’-
. InMaxSeq’)

Send




WO 0211390

PCT/US01/23276
-50- .
Table IV
ot Seq Transition Table -
Seq is the sequence number an incoming packet and len is its length.
Cur. Value of Seq - | Next Update Causing Output
State State InBackSeq, Condition ~on
InMaxSeq, . Network/
OutLastAck Action
by CPU
CAU Seq < CAU None Retransmit due to | Generate
InBackSeq - loss of Ack ReACK
between agent and | request
: client -
CAU Seq = NAC InMaxSeq = New in-order Send
InBackSeq Seq + len, packet received ‘
' update
InMaxSeq’
CAU Seq > CAU None | New out-of-order Drop
InBackSeq : packet received
NAC Seq < NAC None Retransmit due to | Generate
InBackSeq- loss of data ReACK
between agent and | request
' server
NAC Seq = NAC | None (do not | Retransmit due to Send
InBackSeq update loss of data
: InBackSeq between agent and
since it cannot ' server
be ahead of
: OutLastAck’) ,
NAC Seq > NAC None Retransmit, out- Generate
InBackSeq and of-order packet ReACK
Seq < received request
. InMaxSeq K
NAC Seq= NAC InMaxSeq = New in-order Send
InMaxSeq Seq +len, packet received
update
InMaxSeq’

BNSDOCID: «<WO__0211390A2_|_>




WO 02/11390 .

PCT/US01/23276

-51-
Table IV continued
Seq Transition Table
Cur. Value of Seq Next Update Causing Output
State State InBackSeq, Condition on
InMaxSeq, Network/
OutLastAck Action
by CPU
8 | NAC Seq > NAC None New; out- of- Drop
InMaxSeq order packet
received
9 SAC Seq< . SAC None Retransmit due to | Generate
InBackSeq ’ data loss between | ReACK
agent and client request
10 | SAC Seq = SAC/ | InBackSeq= | Retransmit due to Send
" InBackSeq, NAC Seq + len, data loss between o
Seq’ +len’ < InBackSeq’ = agent and server
QutLastAck’ Seq’ + len’
11 | SAC . Seq= SAC | Do not update | Retransmit due to Send
InBackSeq, InBackSeq data loss-between
Seq’ + len” > : agent and server
OutLastAck’
12 | SAC Seq > SAC None Out-of-order Drop
InBackSeq, and | transmit
Seq <

InMaxSeq _ 4
13 § SAC Seq = SAC InMaxSeq = New in-order Send

InMaxSeq Seq packet received .
14 | SAC Seq > SAC None New, out-of-order Drop

"~ InMaxSeq packet received
Notes for Table IV:
5 Note 1: There are two methods for processing a case where SSL

system 1000 receives a packet with Seq = InBackSeq in cases 5 and 11.

‘Method 1. As described in above, the packet is processed (i.e.,
decrypted), and forwarded to the server. However, InBackSeq is not updated to the
new value. This will work efficiently if the server has lost just one packet. In such a

10 case, as soon as the retransmitted packet is sent to the server, SSL system 1000 will

receive an ACK for InMaxSeq', which cause a transition to the CAU state without

having to retransmit all the packets from InBackSeq to InMaxSeq. However, if the

BNSDOCID: <WO__0211390A2_I_>




BNSDOCID: <WO__

10

15

20

25

30

WO 02711390 PCT/US01/23276

-52-
server has lost n (> 1) packets, SSL system 1000 will have to wait for n retransmissions

from the client to get to the CAU state. Method 2 handles this case in a more efficient .

way.

A Method 2. First, collapse the InMaxSeq state to InBackSeq. Next,
process the packet, send the processed i)acket to the server, set InMaxSeq equal to (Seq
+ len), set InngSeq' equal to (Seq' + len"), and go to NAC state. This method has the
advantage that if the server has lost multiple packets in flight, it will get all the packets
from only one retransmission from the client. ' -

In one embodiment, one can use a combination of the above-described

. two methods, for example, one can use Method 1 if (InBackSeq - InMaxSeq) is within

a first predetermined range , and use Mcthéd 2 when it is within a second
predetermined range, which first and second ranges can be determined by routine
experimentation involving optimization of performance. V |
N_Q_t_é_Z: ReACK request
A ReACK request involves sending a 0 byte TCP packet to the server.

‘with a sequence number less that the last ACK that SSL system 1000 sent. In

accordance with the TCP protocol, this will cause the server to respond with the ACK
of the latest packet that it has received so far. SSL sysfem 1000 then uses this lasf
ACK to update the OutLastAck' value with this ACK. Thus, in cases 1, 4, 6, and 9 in
Tablé IV, instead of simply dropping' the packet; SSL system 1000 one can choose to
generate this special request when it will be advantageous to update the OutLastAck'
state. | _ '

In a further embodiment of Rewind Method II, one would utilize a
multiplicity of backed up states, where the multiplicity is greater than the two backed
up states described above (i.e., the “backup state” and the “forward state”). In one such
embodimenf,_ one would utilize, for example and without limitation, three backed up
states, i.e., an extra backed up state between the “backup state” and the “forward state” _
of the above-described embodiment. In such an embddiment, ' Whenever, an
acknowledgment is received for the intermediate state, the “backup state” would

become the former mtermcdlate state and the mtermedlate state would become the

0211390A2_1_>



10

15

20

25

30

WO 02/11390 PCT/US01/23276

-53-
As one can readily appreciate from this, such an embodiment

former “forward state.
might advantageously enhance throughput. .
“Rewind Method III”

As was described above, in accordance with Rewind Method I, non-

proxy agent SSL system 1000 stores information relating to an SSL connection and a

TCP connection in accessible storage, for example, memory, for use in handling
retransmission caused by TCP packets being lost or dropped between the agenf and the
client, or between the agent and the server. As was further described above, the stored |
information éomprises a combinatioh of the SSL connection state described above and
the TCP cormectjon state descriﬁed above_._ As was still further described above, the
agent stored such information for a “backup state” corresponding to a TCP sequence
number pair (InBackSeq, InBackSeq’) and a “forward state”™ cofresponding to a TCP
sequence number pair (InMaxSeq, InMaxSeq’) for each connection. As was yet still
further described above, the “backup state” was advanced whenever a TCP packet
corresponding to the “backup state” waé retransmitted from the client (see Table IV, .
case 10), or wheneyer an Ack’ for the “forward state™ was received from the server
(see Table III, cases 6-7 and 12-13).

'In accordance with Rewind Method III, - the “backup state”
correspondiné to InBackSeqPair, i.e., (InBackSeq, InBackSeq’), the “forward state”
corresponding to InMaxSeqParr, i.e., (InMaxch, InMaxSeq’), and OutlLastAck’ are

still utilized as described above in conjunction with Rewind Method I. In addition,‘in

accordance with Rewind Method III, the agent (SSL system 1000) also buffers (or
stores): (a) the TCP sequence numbers of some (or all) of the TCP packets it receives
between the “backup state” and the “forward state,” and (b) information related to SSL
sequence numbers of some (or all) of the TCP packets it receives between the “backup

2

state” and the “forward state.” These information, i.e., TCP sequence number_s and
SSL sequence number information will be referred to below as “packet marker
iﬁformati'on,” and these packét marker information is buffered (or stored) in a queue
keyed by TCP connection. A |
In accordance with Rewind Method III, if the agent (SSL system 1000)

has received an acknowledgment of some of the TCP packets that it has processed (i.e.,

BNSDOCID: <WO___0211380A2_1_>



20

25

30

WO 02711390 PCT/US01/23276

: -54-
it is in the SAC state described above in conjunction with Rewind Method II), then the

agent recomputes the “saved state” information for the “backup state” corresponding to
(InBackSeq, InBackSeq’) to make it the same as the “saved state” information” for the
last Ack’ it received, which last Ack’ is denoted as OutLastAck’. In other words, in
accordance with Rewind Method II, ihe agent transitions from the SAC state to the
NAC state without waiting for a re-transmitted TCP packet, or an Ack’ for the
“forward state” as is the case for Rewind Method II. As was described above in
conjunction with Rewind Method I, the agent always acknowledges the “backup state”
to the sender, for example, the client. However, in accordance with Rewind Method
IH, by more frequently advancing the “backup state,” the sender, for example, the
client, will receive more up-to-date Acks.. Advaﬁtageously, this will reduce the
number of TCP packets retransmitted by the sender. Although Rewind Method HI
requires more storage, for example, memory, than Rewind Method II, Rewind Method
II will increase network throughput.

The following sets forth the steps required for Rewind Method III for a

. stream cipher.

1. During bulk processing of a connection, the agent (SSL system

' 1000), for example, unit 1006 described above, stores a “backup state” and a forward

state, where the same definitions apply here that were used above in conjunctionvwith
Rewind Method II. ' . » _

2. In addition, in one embodiment of Rewind Method I for use in -
conjunction with a stream cipher sﬁch as RC4, the agent, for‘ eXample, unit 1006, '

buffers (or stores) “packet marker information,” i.e., it maintains a queue of TCP

-sequence numbers and SSL sequence numbers of all packets it processes between

InBackSeq and InMaxSeq. Here InMaxSeq refers to the oldést entry in the queue, ahd

InBackSeq refers to the youngest entry in the ‘queﬁe.

In order to “rewind” the decryption state from: (a) a TCP packet having

packet marker information (c,d) where c is the TCP sequence number and d is the SSL

‘sequence number of an SSL header appearing in the TCP packet for that TCP

connection; and (b) a second TCP packet having packet marker information (a,b)

where a is the TCP sequence number and b is the SSL sequence number of an SSL

BNSDOCID: <WO___0211390A2 1_>



15

20

25

" 30

WO 02/11390 . ' PCT/US01/23276

: ) -55- :
headerAappearing in the TCP packet, one would have to decrypt or encrypt (depending

on the dire_ction of transmission) a number of bytes equal to (c-a) — 5*(d-b). As those
of ordinary skill in the art readily appreciate, for the SSL protocol, an SSL header
comprises five (bytes) which are not encrypted/decrypted. Although this embodiment

.of the present invention is described in conjunction with this specific example, it is not

limited to this protocol. In addition, those of ordinary skill in the art readily appreciate
tﬁat one TCP frame may comprise one SSL header, many SSL headers, or no SSL
header. In order to account for this, the second piece of data in the packet marker
information may sirhply indicate a difference between the SSL seqhence number for a
TCP packet and the SSL sequence number for the succeeding TCP packet to
automatically provide the propef number of encrypted or decrypted bytes in the |
formula given above. ' ‘ | '

For a block cipher such as, for example, DES or 3DES, as was
described above, one cannot “rewind” without the data. However, since the “saved
states™ are 'rclatively small (eight (8) bytes in each direction), in accordance with one
embodimént of Rewind Method I1I, the agent (SSL system 1000) buffers (or stores) all
of the intermediate “saved states” (SSL connection states) between the “backup stéte”
and the “forward state” together with the TCP sequence information. In this case, thé
“rewind” merely entails accessing the relevant block of buffered data corresponding to
the appropriate TCP sequence number. » ‘ ‘

3. Whenever the agent (SSL system 1000) receives an Ack’ 1for a
TCP packet between InBackSeq and InMaxSeq, it replaces the Ack’ with the Ack for
InBackSeq. 4 " '

4. . However, at the same time, the agent (SSL system 1000) works
on advancing InBackSeq towards OutLastAck’ using the packet marker information in
an “offline mode,” that is, without waiting for a retransmission of the backup state

corresponding to InBackSeq as was the case for Rewind Method II and without waiting

- for an Ack’ for the forward state corresponding to InMaxSeq’ as was the case for

Rewind Method II. Instead, whenever, the agent (SSL system 1000) receives an Ack’,
for example, having a value X, using the packet marker information for TCP sequence

numbers between InBackSeq and X, the agent (SSL system 1000) advances the backup

BNSDOCID: <WO___0211390A2_|_>



10

20

25

30

WO 02711390 _ o ‘ PCT/US01/23276

-56-
state from InBackSeq to X by computing the “saved state” information. As described

above, for a stream cipher such as RC4, the “saved state” information is computed in
accordance with the descrii)tion above, and for a block cipher such as DES or 3DES,
the “saved state” infbrmatibn is retrieved in accordance with the description above.
Then the packet marker information between InBackSeq and X ié discarded from the
queue. ‘ S ‘ |

One method of implementing the above-described movement of the
backﬁp state is to have unit 1006 perform the “offline mode” computation itself. A
further méthod of implementing the above-described movement of the Backup state is
to provide another hardware unit that performs the “offline mode” computation in
parallel with unit 1006. A still further method is to have unit 1006 set the punt bit
(described in detail ab(;ve) for all retransmitted packets so that they will be handled in
CPU 1005. | |

In an altefnative embodiment of Rewind Method II1, step 4 above would
be performed before replying to the client. In this altemaﬁye embodiment, the agent
(SSL system 1000) would advance the backup state to OQutLastAck’ lising the packet
marker information as described above. Then, the agent (SSL system 1000) would
replace the Ack’ with the new backup state. '

In accordance with one embodiment of the present invention, two kinds
of inputs can change the state of vé connection in SSL system 1000: (a) an outgoing ack
ina TCP pécket, or (b)- an im':oming‘ TCP packet. Tables V and VI indicate the various .
possible inputs received by the agent (SSL system 1000), and its responses thereto (the
situation for outbound traffic is equivalent). Many methods are well known to those of
ordinary skill in the art for implementing such responses. In addition, in accordance .
with the further embodiment of the present invention, all responses dﬁe to acks can be
handled in unit 1006.

. The following provides some cxplénations to help in understanding the -
manner in which the responses are effected. v
Table V .

The following describes each response in Table V in detail.

BNSDOCID:; <WO___0211390A2_|_>



10

15

20

25

30

WO 02/11390 PCT/US01/23276

-57-
Case 1: Ack’ refers to information in a TCP packet for which

SSL system 1000 has already sent an acknowledgment to the client. SSL system 1000
sends the packet to the client, and sets the ack number to InBackSeq, the next seq -
number that SSL system 1000 expects after the “backup state.” '

Case2:  Ack’ refers to infdrmation in a TCP packét that SSL-
system 1000 is expecting next. SSL system 1000 sends the TCP packet to the client,
and sets the ack number to InBackSeq (the next seq number that SSL sysf,em 1000
expects after the “backup state"’).. _

Case 3: Ack’ refers to information that was not sent to SSL
system 1000. This is an erroneous packet since the server is acknowledging data that it
has not received. SSL system 1000 sends the TCP packet to the client with the same

error.  That is, it sets the ack number to InBackSeq offset by the same amount that

" Ack’ exceeded InBackSeq’. Then, whe1_1 the client receives th_is, it will detect the error

and take appropriate steps to correct it.

Case 4: Ack’ refers to information for which SSL system 1000
has already received an acknowledgment from the server, and sent ‘the
acknowledgment to the client. This Ack’ is probably caused by an error at the server.
SSL system 1000 transmits a ReACK request to the server.  The ReACK request
causes the server to resend an acknowledgment, which acknowledgment is passed to
the client. : v _

Case 5: -~ Ack’ refers to the next seq number that SSL system 1000
expects to receive from the client after the “forward state.” This means that the server

has acknowledged receipt of all information sent by SSL system 1000 to the server.

The “backup state” becomes the “forward stétc," and SSL system 1000 transmits the

TCP packet to the client with the ack number set to InMaxSeq, the next seq number
that SSL system 1000 expects to receive from the client aﬁer the “forward state.” |
Case 6: Ack’ refers to information that SSL system 1000 has not
yet senf (this is just like case 3, an erroneous pécket). The “backup state” becomes the
“forward state;,” and SSL system 1000 transmits the TCP packet to the client with the
ack number reset to the seq- number expected after the “forward state” offset by the

same amount that Ack’ exceeds InMaxSeq’.

BNSDOCID: <WO__0211390A2_1 >~



BNSDOCID: <WO.

15

20

" 25

30.

WO 02/11390 : PCT/US01/23276 .

-58-
Case 7: Ack’ refers to information in a TCP packet for which

SSL system 1000 has not yet sent an acknowledgment to the client. SSL system 1000
sends the pac‘ket}o the client_, sets the ack number to InBackSeq (the next seq number
that SSL system 1000 expects cﬁer the “backup state”), updates QutLastAck’, works
the “backup state” to OutLastAck and discarding packet marker information as it
proceeds (as set forth above). )
Table VI

A " Whenever an incOming message containing encrypted data is received

by SSL system 1000 from the client, it could belong to one of the following categories:

- (a) a new, in-order packet; (b) a new, out-of-order packet; (c) a complete, in-order

- retransmit (i.e., it contains no new data); (d) a partial, in-order retransmit (i.e., some

old data and some new data); and (e) an out-of-order retransmit.

SSL system 1000 determmes the category of an incoming TCP packet

by comparing the packet’s sequence number with the sequence numbers of the

“forward state” and the “backup state.”  Out-of-order packets are dropped in

" accordance with this embodiment of the present invention, but could be reassembled in

alternative embodiments. In-order packets are processed using the “backup state” (i.e.,

InBackSeq) if it is a retrahsmit, or using the “forward state” (i.e., InMaxSeq) if it is a

. new packet.

The fpl]m-&.'ing describes each response in Table VI in detail.

Case 1: - Seq refers to information for which SSL system 1000 has

' aiready received an acknowledgment from the server and sent the acknowledgment to

~ the client. This retransmit was probably caused by a loss of an Ack sent by SSL

system 1000 to the client, and hence, the subsequent retransmission by the client. SSL
system sends a ReACK" requeét to the server (see Note 2 following _TableIV). The
ReACK request causes the server to resend an acknow]edgment, which
acknowledgmen_t is passed to the client. | |

Case 2: Seq refers to new, in-order information that SSL. system
1000 has not yet received. SSL system 1000 processes the information (ie., decrypts it

and verifies the signature), and sends the decrypted information to the server. Also, it

__0211390A2_|_>



15

20

WO 02/11390 ‘ ' PCT/US01/23276

-590.
updates InMaxSeq to the next expected sequence number, and saves the packet marker

information.

Case 3: Seq refers to new, but out-of-order information. In
accordance with this embodiment of the present invention, SSL system 1000 drops this
information. ‘ '

Case 4: This case is handled in the same maﬁner that case 1 is
handied. ‘

Case 5: Seq refers to a retransmit of information that SSL system
1000 processed earlier, but for which SSL system 1000 has not yet-reccived an ack.
This information may be lost between SSL system 1000 and the server. SSL system

1000 processes the infqrmation, and sends it to the server. However, SSL system 1000

~does not update the “backup state” because it has not yet received an ack for this -

packet.

Case 6: Seq refers to retransmitted information, but not the next
expected information. SSL system 1000 “rewinds™ the “saved state™ in the manner

described in detail above, encrypts/decrypts, saves the packet marker information, and

- transmits the rewound TCP packet.

Case 7: Seq refers to new, in-order information. This case is
handled in the same manner that case 2 is handled.

" Case 8: " This case is handled in the same manner tl_lat caée 3is

handled.

BNSDOCID: <WO__0211390A2_I_>



WO 02711390 .

BNSDOCID: <WO___0211390A2_|_»>

PCT/US01/23276
-60-
Table V
. Ack Response Table
Ack’ is the acknowledgment number received by SSL system 1000.
Value of Ack’ Update Ack in TCP Output to
InBackSeq, Header Network
InMaxSeq, '
OutLastAck
Ack’ < None Ack = InBackSeq Send
InBackSeq’ '
- Ack’= None Ack = InBackSeq Send
~ InBackSeq’
Ack’ > None Ack .= InBackSeq Send
InBackSeq’ + (Ack’ - ’
InBackSeq’)
Ack’ < None Generate
QutLastAck’ ReACK request
Ack’ = InBackSeq’ = Ack = InMaxSeq Send
InMaxSeq’ InMaxSeq’ =
QOutLastAck’
Update “saved
state” v ’
Ack’ > InBackSeq’ = | Ack=InMaxSeq + Send
InMaxSeq’ InMaxSeq’ = - (Ack’-
QutLastAck’ InMaxSeq’)
Update “saved
state” .
Ack’ > Update Ack = InBackSeq Send
OutLastAck’ OutLastAck’
and Ack’ < work the
InMaxSeq’ “backup state”
towards
QOutLastAck’,
discarding
packet marker
information on
the way




WO 02/11390

-61-
Table VI

Seq Response Table

" PCT/US01/23276

Seq is the sequence number an incoming packet and len is its length.
Value of Seq Update InBackSeq, Causing Qutput on
InMaxSeq, - Condition Network/Action by
OutLastAck CPU
1 Seq < InBackSeq None Retransmit due Generate ReACK
to loss of Ack request
between agent
' : and client
2 Seq = InBackSeq | InMaxSeq =Seq+ | New in-order Send
len, update _ packet received
InMaxSeq’
save packet marker
. : information
3 Seq > InBackSeq None New out-of- Drop
' order packet :
. o received
4 Seq < InBackSeq None Retransmit due Generate ReACK
: to loss of data request
between agent ’
, and server
5 Seq = InBackSeq None (do not Retransmit due Send
: update InBackSeq | to loss of data
since it cannot be | between agent
ahead of and server
OutLastAck’) ’
6 Seq > InBackSeq " “Rewind” the Retransmit, out- Send
“saved state” save | of-order packet
the packet marker received
2 information '
7 Seq = InMaxSeq | InMaxSeq =Seq+ | New in-order Send
‘ len, update packet received
InMaxSeq’
" None New, out- of- Drop

Seq > InMaxSeq

order packet

received

BNSDOCID: <WO___0211390A2_I_>




20 .

25

30

WO 02/11390 ' ‘ - : PCT/US01/23276

-62-
“Rewind Method IV”

Rewind Method IV eliminates the need for the sender (for example, the
client) to retransmit TCP packets other than those that have been lost in transit.
Further, in accordance with Rewind Method IV, the agent (SSL system 1000) d;)'es not
maintain a “Backup state,” and only maintains a “forward state” for a connection. As a

result, it always acknowledges the last ack it receives from a recipient, for example, the

"~ server. This is different from Rewind Methods II and III which, as was described in

detail above, acknowledge the “backup state.” If any TCP packets are lost between the
agent and the sender, or between the agent and the recipient, eventually the sender will
retransmit the lost TCP packet. In that case, the agent uses the “forward state,” énAd
pack'et marker information to determine the “saved state” of the lost TCP packet.. As
was described in detail above, this determination is done by computation._ for a stream
ciphér such as RC4, and is done by lookup for a block cipher sucﬁ és DES or 3DES.

In accordance with Rewind Method IV, during: bulk processing of a
connection, the agent, for example unit 1006 describéd in detail above, stores packet .
marker information between the last Ack’ received (the sequence ﬁumber

corresponding to OutLastAck’) and InMaxSeq’, where the same definitions apply here

that were used above in conjunction with Rewind Method II.

Thus, in accordance with Rewind Method IV, as shown in Table VII for
an embodiment used with a stream cipher such as RC4, a TCP vConnection'Sta_tc
comprises the following information for each direction of transmission, i.e., incoming
transmission (a transmission from client to Sewcr) and outgqing transmission (a
transmission .from server to client):

.é) - the last TCP sequenbe number acknowledged by a receiver
(denoted as sét forth in detail above by: (i) OutlLastAck' for incoming traffic, and (i)
InLastAck' for outgoing traffic) ' |

_ b) - apacket marker information queue: each entry in this queue is a
pair of TCP sequence numbers, which TCP sequence numbers correspbnd to the TCP
sequence number of 'every TCP packet received »\"ith an offset TCP sequence number
greater than the last OutLastAck’. The pair (InMaxSeq, InMaxSeq’) for-incoming

traffic denotes the relevant information for the most recently received TCP packet (or’

BNSDQCID: <WQO___ 0211390A2_]_>



20

25

30

WO 02/11390 . PCT/US01/23276

A .63-
the youngest TCP packet). The pair (InSeql, InSeql’) denotes the original and offset

TCP sequence numbers (plus len and len’, respectively) of the next most recently
received TCP paéket (or the next youngest TCP packet), and the pair (InSeqn, InSeqn’)
denotes the originé] and offset TCP sequence numbers (plus len and len’, respectively)
of the oldest TCI? packet with an offset sequence number greater than OutLastAck'.‘
Equivélent definitions hold for outgoing traffic. In an alternative embodiment of thé
present invention, packet marker information is not savéd in the queue for TCP packets
that do not include an SSL header.

Further, in accordance with Rewind Method I'V, as shown in Table VIII
for an embodiment used with a stream cipher such as RC4, an SSL Connection State
comprises the foilowing infoﬁnation: _

A Cipher code and a MAC code indicating which SSL qiphet is used,
and which MAC algorithm is used. This information is the same for incoming and
outgoing directions of transmission.

For incoming transmission: . _
"a) a Cipher Key, which may or may not include an initial vector,
énd the MAC secret ' B ' ‘ _

b) a Cipher State of the most recent ’fCP packet decrypted by the
agent (SSL system 1000, by bulk engine 1006 or CPU 1005) '.

¢) = aqueue of SSL sequence numbers for the TCP packets received
with a TCP Sequence number greater than the largest TCP sequence number
unacknowledged by the receiver. Recall that an SSL sequence number is used to Vcrify

the MAC in each message, and that the SSL sequenée number is incremented for every

- SSL message processed. The list of SSL sequence nhmbers are stored because each

TCP segment may contain more than one SSL message, or there might be one SSL |
message than spans multiplé ‘TCP segments. Note that, for memory efficiency, only
the difference between two consecutive SSL sequence numbers are stored.
For Outgoing Traffic:

a) the Cipher Key and the Mac Secret _

b) a Cipher state of the most recent TCP packet encrypted by the
agent (SSL system 1000, by bulk engine 1006 or CPU 1005)

BNSDOCID: <WO___0211390A2_|_>



15

20

25

30

WO 02711390 . PCT/US01/23276

-64-
Note that SSL sequence number information are not stored for each of .

the TCP packet marker information (although they could be). This can occur in
accordance with this embodiment, because SSL system 1000 can ensure that there is
exactly one SSL message for each TCP packet when an outgoing meséage is encrypted,
thereby obviating the need to maintain a history of SSL sequence nﬁmbers (although
this doés not have to the rule). '

Overview: .

Whenever the agent receives an Ack’ that is greater than OutLastAck’,
the agent acknowledges the equivalent Ack to the sender, and discards all packet
marker information between QutLastAck’ and Ack’. ‘In cher words, in general, the
agent always acknowledges the equivaleﬁt value 6f the most recent Ack’ it receives.

" Whenever a TCP packet (a seq with data frdm the sender or an Ack’
from the recipient) gets lost between the agent ahd the sender, or between the agent and
the recipient, it will be retransmitted. If the agent receives a retransmitted TCP packet,'
it determines the “saved state” of the retransmitted TCP packet using the “saved state”
of the “forward state” (InMaxSeq), and thé backe; marker information. For a stream
ciphef suéh as RC4, it then decrypts/encrypts the 'retransmitted TCP packet, and
forwards it. One method of implementing this is to have the bulk engine, i.e., unit
1006, perform the computation itself. A further method of implementing this is to
provide another, hardware unit that pgrfonﬁs the 'computation in parallel with unit
1006. A still-further method is to have unit 1006 set a punt bit for all retransmitted
TCP packets so they will be handled in CPU 1005. 4

‘ The following pseudo-code describes how an embodiment of Rewind
Method IV processes an ack for an outgoing TCP packet, i.e., a TCP packet sent from
the server to the client (the procedure for processing an ack for an incoming TCP
packet is equivalent). | ‘

proc adjustOutboundAck:

ackSeq’ <- TCP Ack’ number of the input TCP packet
bTcpcb <- pointer to the TCP Connection State (i.e., InMaxSeq’)
inMarker ~<- the input marker queue in the TCP Connection State

sslMarker <- the SSL sequence queue in the TCP Connection State

BNSDOGID: <WO___ 0211300A2_|_>



WO 02/11390 . PCT/US01/23276

if (ackSeq’ > bTcpcb -> InMaxSqu5

/! this is equivalent to cases 3, 7, and 13 for Rewind Method II

begin

' . replace ackSeq by (bTcpcb-> InMaxSeq + (ackSeq” — bTcpcb->
5 InMaxSeq")
. deque all the packet marker information from inMarker

deque éll the SSL sequence-numbers from ss|Marker
transmit the TCP packet with TCP sequen.ce number.ackSeq
return;

10 ' end )
. / Search for the TCP packet in the inMarker queue

/i Whenever the agent receives an Ack’ that is greater than OutLastAck’
! the agent acknowledges the equivalent Ack to the sender, and discards
all. ’
15 /" packet marker information between OutLastAck’ aﬁd Aék’

count <- # of elements in the inMarker queue

while (count > 0)

begin ' ~ ‘ -
if (inMarker[count].Seq’ <=ackSeq’) v ‘
20 : begin
replace ackSeq by inMarker[count].Seq
deque count - 1 elements from the inMarker
deque count - 1 elements from sslMarkef ,
transmit the TCP packet with TCP sequence number ackSeq
5 . return’ '
end
éount <-count -1
end »
1/ If no matching packet found, set ackSeq equal to the
50 /! offset value of the oldest packet marker informafion in the queue

ackSeq = = inMarker{oldest].Seq

BNSDOCID: <WO___0211380A2_)_>



WO 02/11390 . PCT/US01/23276

-66- :
transmit the TCP packet with TCP sequence number ackSeq

return
end proc adjustOutboundAck
The following pseudo-code describes how an embodiment of Rewind
5 ° Method IV processes an incoming TCP packet containing data, i.e., a TCP packet sent
| from the client to the server (the pro.cedurc for processing an outgoing TCP packet
containing data is equivalent). '
proc adjustInboﬁnchpSeq:
tcpSeq <- TCP Seq Number of the input TCP packet
10 " bTcpcb <- pointer to the TCP Connection State (i.e., InMaxSeq)
if (tcpSeq = = bTcpeb -> InMaxSeq) - |
begin A
7 This is the common case, the next expected TCP packet
/! has arrived, i.e., an in-order packet
15 ' decrypt the TCP packet using the current cipher state for InMaxSeq
replace tcpSeq with bTcpeb —> InMaxSeq’ (known after decryption)
enque (tcpSeq + len, tcpSeq' + len’) at top of the packet marker -
information queue
~ transmit the decrypted TCP packet
20 ‘return
end .

if (tcpSeq > btcpcb -> InMaxSeq)

begin
/! This TCP packet is oﬁt of order; drop it
25 . a drop frame - '
returmn
end .
/" Handle a retransmitted TCP packet:
/" Whenever a TCP packet (a seq with data from the sender or an Ack’
30 ' /A from the recipient) gets lost between the agent and the sender, or
1 between the agent and the recipient, it will be retransmitted. If the

BNSDOCID: <WO___0211300A2_I_>



WO 02/11390

10

15

20

25

30

BNSDOCID: <WO__0211390A2_1_>

/!

/"
/"
/"

PCT/US01/23276

-67- 4
agent receives a retransmitted TCP packet, it determines the “saved

state”
of the retransmitted TCP packet using the “saved state” of the “forward
state” (InMaxSeq) and the pécket marker information. It then

decrypts/encrypts the retransmitted TCP packet, and forwards it.

inMarker <- the input packet marker information queue

youngest <- index of youngest packet marker information in inMarker

sslMarker <- the SSL sequence number queue

count

<- # of elements in inMarker

maxSeq <- bTcpcb.-> InMaxSeq

Y/,
Y,

rewindBytes represents the number of bytes to “rewind” starting

from the “forward state”

rewindBytes <-0

while (count)

begin
7
/!
1
/"
/

1

1/

74

numSdlHdr represents the number of SSL headers received
between the retransmitted TCP packet and the “forward state”
as described above, this is needed to determine the number of bytes
that need to be decrypted for “rewind” from the “forward state” back
to the fetransmitted TCP packet ‘
numSslHdr <- sslMarker{youngest] - ssiMarker[count]
if (inMarker[count].Seq == tcpSeq)
begin '
_ replace tcpSeq by inMarker{count].Seq’

_ this algorithm assumes that each SSL header comprises

five (5) bytes, but the present invention is not limited by this
rewindBytes <- (maxSeq - inMarker[count].Seq) -
numSslHdr * 5
The method for the rewind was described in detail for RC4 above
Rewind the SSL Cipher State by rewindBytes |

Decrement the SSL Sequence number by numSsIHdr



WO 02711390 ’ ) PCT/US01/23276

. -68-
1/ The method for the decryption was described in detail for RC4 above

decrypt the TCP packet using this rewound SSL Cipher state
V and sslMarker[count] as the SSL sequence number |
qansmit the decrypted TCP packet . ‘
5 _ . return; '
end
count <- count - 1
" end .
N -If this is reached, the server has already acknowledged
0 " this TCP packet, so just drop it '
" drop TCP packet
return - v
end adjustInbounchpSeq. ' ‘ ,
In a further embodiment of Rewind ‘Method: IV, the decryptionA
15 algorithm fdr the retransmitted TCP packet is carried out at the same time as the
rewind algoﬁth@ is being carried out. As one can readily appreciate, the bytes in the
retrahsmitted algorithm- are decrjpted from _the'bqtt'om of the rctraﬁsmitted packet to '
the top. As one can readily appreciate, this should save computation time since the
retransmitted - TCP pa;:két will be decrypted at the same time that the “rewind” is
20 finished. | | |
For a Block cipher such as, for -example, DES or 3DES, as was
described in detail above, instead of rewinding the cipher state, one 'merely rétrie\}es

the initial vectors from the packet marker information.

BNSDOCID: <WO___0211390A2_1_>



WO 02/11390 PCT/US01/23276
-69-
" Table VII
TCP Connection State
Incoming OutLastAck’
Incoming Packet Marker
] InMaxSeq InMaxSeq'
Information Queue
InSeq] InSeql'
InSeq2 InSeq2'
InSeqn InSeqn'
Outgoing InLastAck'
Outgoing Packet Marker '
: ' : OutMaxSeq OutMaxSeq'
Information Queue
OutSeql OutSeql’
OutSeq2 OutSeq2’
OutSeqm ' OutSeqfn'
~ Pointer to associated SSL Connection State

BNSDOCID: <WO__0211390A2_I_>




WO0-02/11390

BNSDOCID: <WO___0211390A2_I_>

-70-
Table VIII

SSL Connection State

PCT/US01/23276

Cipher Code MAC Code
. ) Read MAC
Incoming Cipher Key '
' Secret
Cipher State for
InMaxSeq
SS1. Sequence
InSeql InSeq2
Queue o
InSeq3 InSeq4
InSeqn
Write MAC
©  Qutgoing Cipher Key
. ) Secret

Cipher State for
OutMaxSeq




WO 02/11390 _ ' ) ' PCT/US01/23276

-71- o
Those skilled in the art will recognize that the foregoing description has

been presented for the sake of illustration and description only. As such, it is not

intended to be exhaustive or to limit the invention to the precise form disclosed. For

example, many of the above-described features of the inventive, non-proxy mode agent
5 could be used to fabricate embodiments of a proxy mode agent. -

In a still further embodiment of the pre§ent invention, SSL system 1000
shown in FIG. 4 could be implemented in a distributed system where the various
functions described above could be embodied in a distributed multi-processor system.
In such an embodiment, fhe various parts would communicate over busses or over a

10  communications network such as, for example and without limitation, a local network.
In addition, in one such embodiment, the two directions of communication could also
be handled by two different systems, wherein each system could itself be distributed.
Long SSI. Messages ' ‘

The following describes an embodiment of the present invention that
15 handles SSL messages that span multiple TCP segments. One can assume, for the sake
of the description, that this is an exceptional case for normal system behavior.
Background: ' ‘
Long SSL messages only raise an issue for messages originating from
the ciient, since the;/ are encrypted. As is well known, in accordance with the SSL.
20 protocol, the maximum length of an SSL message is 16K bytes, and a typical window
size could be larger or smaller than the maximum SSL messagev size. Further, as will
described in detail below, this embodiment of the present invention needs to be aware
“of the window size. This is needed (ih accordance with the TCP protocol) so that the
window size does not shrink without a receiver’s receiving any more data. -
25 de ways to handle these long SSL messages are: (a) a buffering
method where the ﬁllll SSL message is buffered (the signature is verified, and the SSL
message is sent to the server); and (b) a packetized method where fractions of the SSL
message are sent to the servér, ‘as they are received (the signature is processed
whenever it is received).
30 An advantage of the packetized method is that rit does not require much

memory, and it does not require an embodiment of an intermediary agent to become a

BNSDOCID: <WO___021 1390}\.2_I_>



10

- 15

.20

25

30

WO 02/11390 ’ PCT/US01/23276

, , ‘ -72-
TCP system (i.e., it remains in a non-proxy mode). One problem with the packetized

method is that a malicious agent could modify the message contents, and the SSL.:

- header, so that an application request can be received by the server (and possibly acted

upon) before the signature is verified. However, since a maliciou_s agent still has to
work on an encr};pted message, it is still very unlikely that the message will contain
anything meaningful. ’ |

Buffering Method

The following will describe the buffering method as its behavior relates

to: (a) SSL processing (ehcryption and MAC computation of the message); and (b)

- TCP processing.

SSL processing

In accordance with this eﬁlbodiment of the present invention, eac_:h'piece
of the long SSL message will be decrypfed, as it is received, and a running MAC will
be computed. Because of the MAC computation, the long SSL message must be
processed in blocks of 64 bytes. For each long SSL message, this means there can be
up to 63 bytes that need to be saved for processing when the next segment of the long
SSL méssag_e arrives. These bytes will be referred to as the “ragged edge.”

In addition to the above-described information that is stored in the SSL
Connection State (see Tables II and VIII, and the descriptions set forth above), in
accordance with this embodiment of the present invention, the following information is
also stored in the SSL Connection State as a lor;g SSL message is processed:

a) é total expected length of the message (for chmple, 2 byfes);

" b) a length up to the last fully processed block (for example, 2
bytes); |

c) a partial signature as of the last processed block (for example, 20

, bytes); _

d) a length of the ragged edge (for example, 1 byte); and

. €) the ragged edge bytes themselves (for example, 63 bytes).

Thus, for this embodiment, 88 bytes of storage are required, plus storage

for a pointer to a dynamically allocated structure to hold the decrypted buffers for the

message data. This information is stored in addition to the cipher state corresponding

BNSDOCID: <WO___0211390A2_1_>



10

20

725

30

WO 02/11390 : . PCT/US01/23276

-73- .
to the next expected block: a 256 byte RC4 state, or an 8 byte DES/3DES state (this

information is stored already as part of the SSL Connection State — for InMaxSeq).

The SSL processing of long SSL messages could be performed by CPU
1005 or by bulk encryption/decryption unit 1006, both of which are described above in
conjunction with FIG. 4. To do this processing of long SSL messages, CPU 1005 or
bulk encryption/decrypﬁon unit 1006 will concatenate signatures, i.e., a MAC
computation must start a partial signature, and CPU 1005 or bulk
cncryption/decryption unit 1006 must save the partial signature when it is done with a
block.

TCP Processing

In accordance with this embodiment of the present invention, tﬁere arc .
no rewinds for long SSL messages. In addition, an ' embodiment of the present
invention tracks the window size offered by both ends of a connecnon at all tlmes 'I‘o
do this, the window size is added to the TCP Connection State (see Tables I and VII,
and the description sct forth above), and is updated on all Acks, i.e., the window size
used is the window size of the last packet sent by the server to the client, see Table IX..

In accordance with one embodiment of the present invéntion, an_
inventive agent “holds” the client after receiving the entire long SSL meésagc (e,
inhibits the client from #ending data to the server). For example, the agent can do this
in one embodiment by sending a window size of zero with an Ack (in accordance with
the TCP brolocol, upon receipt thereof, the client will not éehd any more data). In
addition, the agent will set the InS.eq TCP sequence number to that for the end of the
long SSL message after the entire long SSL message has been received (the agent does
not update InMax until the last packet for the long SSL message has béeh received).

Message reception

In accordance with this embodiment of the present invention, while the
inventive agent is receiving a long SSL message from the client, it will not forward it
to the server. However, in some instances it may be desirable to forward Acks
contained in the long SSL message to the server (i.e., strip the packets of data, and just
send the Acks), or at least the first Ack, to avoid unnecessary retransmissions from the

SCTVET.

BNSDOCID: <WO___0211300A2_1_>



20

25

WO 02711390 PCT/US01/23276

-74-
If the server is caught up (i.e., the inventive agent has received an Ack

from the server for every TCP packet that the inventive agent has sent to the server
thus far — for an embodiment using Table VII for the TCP Connection State, this
means that the packet marker count is zero), in one embodiment, the inventive a'gent
sends Acks to the client 'as the messages are received therefrom, and in anothér
embodiment, the inventive agent holds all Acks. Thus, the inventive Agent can either
send an Ack to the client after the réceptic')n of any message, or it can implemeht
delayed Acks (for example, in accordance with the TCP protocol, the agent can Ack
every, for example, second message, or the agent can Ack in accordance with a timer).
In accordance with the first embodiment, the inventive age'_nt will send Acks upon
me'ssége reception from the client, and these Acké will contain the current window size
offered by the server.

On the other hand, if the server is not caught up, and the client
retransmits some messages before the long SSL message is completely received by the
inventive agent, the inventive agent will forward those other messages to the server.
Again, only when the server is caught up to the beginning of the long SSL message
does the inventive agent start Ack-ing to, the client what the inventive agent has
buffered. | |

Message forwarding

In accordance with this embodiment of the present invention, the

-inventive agent will not start forwarding the long SSL mcssagé to the server until the

server has caught up to the beginning of the long SSL message. As the inventive agent
forwards the decrypted anrd verified data stream to the server, the inventive agent méy
send Acks to the client, even though the client already received these Acks from the
inventive agent. - This will not be a problem provided that-the inventive agent sendé a
window size of zero (to hold the client from sending any more data). When the entire
long SSL message has been sent to the server, and the inventive agent has received an
Ack indicating that the entire stream has been received, the inventive agent will resume

“normal” function.

BNSDOCID: <WO___0211390A2_{_>



20

25

WO 02/11390 PCT/US01/23276

. -75-
In this state, for transmission of the long SSL message to the server, the

inventive agent will have a retransmit timer enébled, and it will also count Acks from
the server to detect the need for fast retransmissions.
State Transition Table

This section describes: (a) state transitions of the inventive agent when
handling long SSL messages; and (b) actions the inventive agent will take for each
possible packet it receives from the server and from the client. Table IX sets forth the
actions taken by the inventive agent for incoming packets from the network.
States

In accordance with one embodiment of the present invention, the
inventive agent can be in on'e of the following three states at any time: '

Packet Forwarding (FWD) State: The inventive agent is in the FWD
state whenever there i1s no data buffered by the inventive agent. In this state, all

incoming SSL messages that are fully contained in one TCP packetv are processed in

the manner described above, and forwarded without bufferiné.

Long Message Accumulate (ACC) State: The inventive agent is in the

ACC state when it starts receiving a long SSL message from the client. The inventive

égent remains in the ACC state until the current long SSL message is éompletely

received by the inventive agent.

. Long Message Transmit (XMT) State: Once the invenﬁve agent has
received the entire long SSL message, it starts transmitting the decrypted data to the
server. During this process, the inventive agent is in the XMT state. The inventive
agent rema-ins in the XMT state until the server acknowledges all the data from the
long SSL message. Once the last Ack for the current long SSL messagé is received, if
the inventive agént has any buffered data left (from the ﬁext SSL message),'it goes
back to the ACC state, otherwise it goes to the FWD state. o

All the state transitions and actions for the inventive agent are described
below. An SSL méssage is called a Short SSL Message if it is completely contained in

an incdming TCP packet..

BNSDOCID: <WO__0211390A2_I_>



WO 02711390 PCT/US01/23276
-76-
Table VIII
Long SSIL. Message Transition Table
Current | Incoming | Incoming | Next Action Window Output
State Message Message State Size Used to
_Source Contents . Network
FWD: no client short SSL FWD |decryptand |record forward
long SSL message forward window decrypted
message ' size from [ message
(LSM) client to server
pending :
-FWD client |LSM, first ACC |decrypt, use last Ack to
packet buffer,and |recorded client
Ack packet | window
to client size from
server
FWD server |any FWD }encryptand |[record forward
forward window to client
size from
. server
ACC:long | * client |[LSM ACC |decrypt, use last Ack to
SSL packet, not buffer, and |recorded client
| message including Ack packet |window :
received entire MAC to client size from
server
ACC client [LSM packet | XMT |decrypt, use window [ Ack to
including verify MAC, |size=0 in client,
entire MAC Ack packet |Ackto | first
and no bytes to client, and |client, and [decrypted
from next forward to last packet to
SSL server recorded server
message client
window
size in
message to
server

BNSDOCID: <WO__0211390A2_1_>




WO 02/11390

-77-

Table VIII continued '

Long SSL Message Transition Table

PCT/US01/23276

Current | Incoming | Incoming | Next Action Window Output
- State Message | Message | State ' Size Used to
Source Contents | Network
‘ACC client |LSM packet | XMT |decrypt, use window | Ack to
with entire verify MAC, |{size=0in . |client,
MAC and Ack Ack to and first
some bytes completed client, and |decrypted
from next SSL message | last packet to
SSL message packet to recorded server
client, client
forward "{ window -
verified size in
" message to message to
server, buffer | server
start of next
SSL message
ACC client . |retransmitted | ACC |rewind state, no action forward
o short SSL decrypt, and to server
message forward
ACC client |retransmitted | ACC drop no action |none or
packet of Ack, if
current LSM: necessary
with/without *
. MAC A
~ACC client |retransmitted | ACC drop no action |none or
packet of an ’ Ack, if
earlier LSM necessary
*
ACC _ server any ACC |encryptand |use last forward
forward - recorded to client
window '
: size
XMT: client |new data XMT |drop, since |no action ‘none
decrypted ' client is
LSM being sending data
transmitted after window
to server size=0

BNSDOCID: <WO___0211380A2_1_>




WO 02711390 PCT/US01/23276
-78-
Table VIII continued
Long SST Message Transition Table
Current | Incoming| Incoming | Next Action "Window |. Qutput
State Message | Message State Size Used . to
Source | Contents Network
XMT server _ |partial Ack | XMT |encrypt (if set window | forward
: ‘(with or data) and size in Ack to
without forward, send | packet to client,
data) of more data to |client= 0, forward
LSM ‘| server use last more
recorded LSM data
window to server
size for the
client in the
message
sent to the
_ server .
XMT server |Ack oflast | ACC |encrypt(if |restore forward
byte in data) and window to client
LSM, but forward size to the
| some one .
buffered _ | specified by
data | the server
remains on . :
agent
XMT server | Ack of last FWD |encryptand |restore - forward
byte of forward window to client
LSM, no size to the
buffered one
data in the specified by
: server the server
* It may be necessary to send an Ack if the inventive agent is using delayed Acks-

in accordance with one aspect of the TCP protocol.” In addition, it may be necessary to

5 send an Ack if there is a missing packet in transmission from the client, and the

inventive agent wants to instigate a retransmission of the missing packet.

BNSDOCID: <WO___0211390A2_1_>




W0 02/11390 "PCT/US01/23276

-79-
Lastly, although the detailed description set forth above discussed

communications between a client and a server, it should be appreciated by those of
ordinary skill in the art that the present invention is not limited thereto. In fact, it is
within the scope of the present invention to include embodiments that relate to

5 communication between a first and a second end.

BNSDOCID: <WO____0211350A2_I_>



10

15

20

25

30

WO 02711390 ‘ - PCT/US01/23276

-80-
What is claimed is:

1. A method for handling security in a communication between a

. first end and a second end involving a security layer, a transport layer, and a network

layer, which method comprises steps of: A

receiving network layer packets> from the first ehd of the
communication,v which packets contain information encrypted using security layer
encryption processing;

decrypting the encrypted information using security layer decryption
processing; and - '

transmitting network layer packets to§va.rd the second end of the
communication, which packeﬁ contain the decrypted information. ' -

2. A method for handling security in a communication between a

. first end and a second end involving a security layer, a transport layer, and a network

layer, which method comprises steps of:

réceiving network layer Apackets from the second end of " the
communication, which packets contain information not encrypted using security layer
encryption processing; ' _ '

encrypting the information using security layer decryptién processing;
and | -

transmitting network layer packets toward the first end of the
communication, which packets contain the encrypted information.

- 3. The method of claim 1 which further comprises steps> of:

receiving network layer packefé from the second end of the
communication, which packets contain information not éncrypted usiﬁg security layer
encryption processing; 7

' encrypting the information using security layer encryption processing;

and

transmitting network layer packets toward the first end of the
communiication,, which packets contain the encrypted information.

4. The method of claim 3 which further comprises steps of:

BNSDOCID: <WO__0211390A2_I_>



15

20

25

30

WO 02/11390 . PCT/US01/23276

-81-
transmitting transport layer information from the first end to the second
end; and
transmitting transport layer information from the second end to the first
end. i

5. The method of claim 4 which further comprises steps of:
receiving security layer session messages from the first end; and
- responding to the first end to the security layer session messages.
6. The method of claim 5 wherein the steps of receiving and
responding to security layer sessién messages comprises a step of establishing a
security layer session with the first end. ' _ |
| 7. The method of claim 6 which further_comprises determining a
security layer encryption/decryption algorithm to be used for the communication. '
. 8. The method of claim 7 which further comprises determining
initial code information used in the algorithm.
9. | The method of claim 4 which further Comﬁﬁses steps of:

maintaining information, or information derived from, at least some

transport l'ayer information sent from the first end to the second end; and

maintaining information, or information derived from, at least some
transport layer information sent from the second end to the first end.

10. The method of claim 9 which further comprises steps of:

maintaining information, or information derived from, at least some
networkvlayer packefs sent from the first end to ihe second end or sent from the second
end to the first end.

. 11. The method of claim 10 which further comprises steps of:

saving - at least some information resulting from decrypting the
encrypted information or resulting from encrypting the information not encrypted. |

12. The‘ method of claim 11 which further comprises a stép of
associating. network packets with the communication using at least some of the
maintained information obtained from transport layer information and at least some of

the maintained information obtained from network layer information.

BNSDOCID: <WO___0211390A2_I_>



PCT/US01/23276

WO 02/11390

1/6

502 | | 02
[ [~ | [ ~—
£ £ : g
021" @ P st " e RARR2 4 a _V
.y s L zawza 188 K s
e | ) T .y
| (16Y HOTHd)
¢ ‘914
H3AH3S NI __
s 0 o |

SUBSTITUTE SHEET (RULE 26)

0211390A2_I_>

BNSDOCID: <WO__|



PCT/US01/23276

WO 02/11390

My XY
HALSAS
158
0102 03 05 0002
o007
S 914
. 06 2
o~ N —
| U [— N0 —
e
b Y
6021 ) 0 b
g @ NOLLONNS 755 e
1754 & N3k
ee e 0l

>SUBST|TUTE SHEET (RULE 26)

BNSDOCID: <WO___0211390A2_|_>



WO 02/11390 : - PCT/US01/23276

35
FIG. 4
1001
NETWORK
INTERFACE
Ja 1005 Va 1004 /j
?
- "‘. Vs - L~ 1002
CPU 1006
N Y
e - -\
2 |
1003
1000 : NETWORK ’-/
INTERFACE -

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___0211390A2_|_> -



WO 02/11390 ) PCT/US01/23276

4/6
FIG. 6
CLIENT AGENT " SERVER
TCP/IP SYN 143 5080
\“—-
" 443] 8080
] SYN-ACK fggégE |
’ J
= = CLIENT FELLO B
HANDSHAXE
S —— e
2 3010
ﬁ\-
UK -~ [ TT—— )
ENCRYPTION o T | |
DECRYPTION >% | pHASE
o [ e | 3020
"_________________-4
\‘—_”__________—1 ; )
qeprp ——CLIENT FIN 443] gogy )
FINISH
SERVER ACK ] { oo
SERVER FIN| (3030
%3] 5080 g
| CLIENT AK T |

SUBSTITUTE SHEET (RULE 26) .

BNSDOCID: <WO__0211390A2_|_>



WO 02Y11390 PCT/US01/23276

3/6

FIG. 7

NETWORK INTERFACE | *000

ERROR IN
FRAVE NON-SSL
FRANE
DROP , NOT FOUND
CLIENT HASH (

LOOKUP

ALERT OR UNUSUAL
MESSAGE OR
SESSION T;HMINATION

CHECK SSL HDR
TCP SEQ

RETRIEVE BUFF ssL sTAte b 1040
l , 1050 DECRYPT OR
r SIGNATURE EFROR
BULK ENCRYPT/DECRYPT -
l lv+

'FURTHER L4025

UPDATE .
1) BUFF SSL STATE : | ANALYSIS

2) DIDDLE SEQ, ACK,
PORT NO., CKSUM

70 INTERFACE

4

SUBSTITUTE SHEET (RULE 26)

BNSDOCID: <WO___0211300A2_|_>



PCT/US01/23276

WO 02/11390

6/6

AYIN HSYH INITT) 3LY34) "2
3LVIS 4408 ALVHY T

NNO 3507)
o1y LH31 QNS
oL o 3 NOLLVNIHEL NOTSSS S53006
IHSONH 15 HU0-3d
N3G 0L SL3SH JOVSSH 168 KT T1aNISSY W d)
o1 L ONS 05— 13TV S$3004d ooy MHSONGH 1l $5300Kd
" 0M04. L0
. 3 915 W31 NOTSS3S 1O 95 JNG 1AL
HO 1dA30 ST Al L
1||<‘ R
8 914

SUBSTITUTE SHEET (RULE 26)

_>

BNSDOCID: <WO__0211380A:



(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(19) World Intellectual Property Organization
International Bureau

0 000 0 0 O

(10) International Publication Number

(43) International Publication Date

7 February 2002 (07.02.2002) PCT WO 02/11390 A3
(51) International Patent Classification™ ‘H(HL 29/06 (81) Designated States (national): AE. AG. AL, AM. AT. AU,
AZ.BA.BB.BG.BR.BY.BZ.CA.CH.CN. CO.CR. CU.
(21) International Application Number: PCT/US01/23276 CZ. DE. DK. DM. DZ. EC. EE. ES. FI. GB. GD. GE. GH.

GM,HR, HU.TD. L. IN. 1S, JP. KE. KG. KP. KR. KZ. LC.
LK, LR. LS. LT, LU. LV. MA. MD. MG. MK, MN. MW,
MX. MZ. NO. NZ. PL, PT. RO, RU. SD. SE. SGC. SI. SK.

(22) International Filing Date:” 24 July 2001 (24.07.2001)
’ SL. TI. TM. TR. TT. TZ. UA. UG. UZ. VN. YU. ZA. ZW.

(25) Filing Language: English

. (84) Designated States (regional): ARIPO patent (GH. GM.
- (26) Publication Language: English KE. LS. MW. MZ. SD. SL. SZ. TZ. UG. ZW). Eurasian
patent (AM. AZ.BY.KG. KZ. MD. RU. TJ. TM). European
(30) Priority Data: ' patent (AT, BE. CH. CY. DE. DK. ES, FI, FR.GB. GR. |E,
09/630.330 31 July 2000 (31.07.2000) US IT. LU. MC. NL. PT. SE. TR). OAPI patent (BF. BJ. CF.
09/703.110 .31 October 2000 (31.10.2000)  US CG. CI. CM. GA. GN. GQ. GW. ML. MR. NE. SN. TD.

09/792.964 26 February 2001 (26.02.2001)  US TG).

(71) Applicant: ANDES NETWORKS, INC. {US/US]: 2025 Published: .
Stierlin Court. Mountain View. CA 94043 (US). -— with international search report

(72) Inventors: MATURANA, Guillermo: 2730 Belrose Av-  (88) Date of publication of the international search report:
enue, Berkeley. CA 94705 (US). NAIK, Ashish, V.; 1680 ) 16 May 2002
Via Fortuna. San Jose. CA 95120 (US). ’

: For two-letter fodes and other abbreviations, refer to the "Guid-
(74) Agent: EINSCHLAG, Michael, B.: 25680 Fernhill Drive.  ance Notes on Codes and Abbreviations” appearing at the begin-
Los Altos Hills, CA 94024 (US). ning of each regulur issue of the PCT Gazette.

(54) Tide: NETWORK SECURITY ACCELERATOR

G 0 A I

—
5 210
' SSL* FUNCTION
3 3
2 ] A I L
= —U Ul — 00—
c\ ;.Y_J
o 204 302
: (57) Abstract: Embodiments of the present invention provide method and apparatus that encrypt/decrypt messages sent over a net-
~~~ work rapidly. and which do no require large amounts of computational or memory resources. In particular, one embodiment of the
g present invention is a method for handling security in a communication between a first end and a second end involving a security

layer, a transport layer. and a network layer. which method includes steps of: (a) receiving network layer packets from the first
cnd of the communication, which packets contain information encrypted using security layer encryption processing; (b) decrypting
the encrypted information using security layer decryption: and (¢) transmitting neiwork layer packets toward the second end of the
communication, which packets contain the decrypted information. ' -

WO

BNSDOCID: <WO___0211390A3_|_>



"TERNATIONAL SEARCH REPORT

armational Application No

PCT/US 01/23276

- CLASSIFICATION OF S| OBJECT MATTER

TP 7 h0aL29

According to Inlernationat Patent Classification (IPC) or to both nalional ciassification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system tollowed by classification symbols)

IPC 7 HO4L

Documentation searched other than minimum documentation 10 the extent that such documents are included in the fields searched

Elecironic data base consuited during the international search (name of data base and, where practical. search terms used)

EPO-Internal, WPI Data, PAJ, INSPEC

€. DOCUMENTS CONSIDERED TO BE RELEVANT

Category ° | Citation of document, with indication, where appropriate. of the relevant passages Relevant to claim No.

X "Using the Accelar 710 User Switch, Part 1-12
No. 207611-A"

NORTEL NETWORKS, ‘Online!

11 October 1999 (1999-10-11), XP002189706
Santa Clara, CA (USA) .
Retrieved from the Internet:
<URL:http://www25.nortelnetworks.com/1ibra
ry/tpubs/pdf/accelar/207611A.PDF> ‘
‘retrieved on 2002-02-08!"

page 2-1, line 17 - 1line 19

' page 2-2, line 4 - line 6

page 3-2, line 1 -page 3-4, line 7

page C-1, line 1 -page C-2, line 13

-

m Further documents are listed in the continuation of box C. D - Patent family members are listed in annex.

° Special categories of cited documents : .
Sp . *T* iater document published after the interational filing date
or prority date and not in contlict with the application but

*A* document defining the general stale of the arn which is not cited to understand the principie or theory underlying the

considered to be of particular relevance invention
‘E® earlier document but published on or after the international *X* document of particular relevance: the claimed i tionh
filing date ) cannot be consigered novel or cannot be considered 1o
*L* document which may throw doubts on priority claim(s) or involve an inventive step when the document is taken alone
which is cited to establish the publication date of another *Y* document of particular relevance: the claimed invention
citation or other special reason (as specified) cannot be considered to involve an inventive step when the -
*O* document referring to an oral disclosure, use, exhibition or . document is combined with one or more other such docu—
other means ments, such combination being obvious 10 a person skilled
*P* document published prior to the intemational filing date but in the an.
tater than the priority date claimed *&* document member of the same patent family
Date of the actual completion of the intemnational search R Date ot mailing of the internationat search repon
8 February 2002 01/03/2002
Name and mailing address of the ISA ' Authorized officer
European Patent Office, P.B. 5818 Patentlaan 2
NL - 2280 HV Rijswijk :
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl, s
1 Fax: (+31-70) 340-3016 Tous Fajardo, J
.
Fom PCTASA/210 (second sheat) {(July 1882)
page 1 of 2

BNSDOCID: <WO___0211390A3_I_>




BNSDOCID: <WO

"ITERNATIONAL SEARCH REPORT

srnational Application No

PCT/US 01/23276

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT

Category *

Ciation of document. with indication.where appropriate. of the relevant passages

Relevant to claim No.

P,X

"Packetized SSL Understand1ng the
Advantage"
ANDES NETWORKS TECHNICAL WHITE PAPER,
‘Online! 1 March 2001 (2001-03-01),
XP002189707 .
Retrieved from the Internet:

15038519_ss1_advantage.pdf>
‘retrieved on 2002-02-06!
the whole document

<URL:http://www.andesnetworks. com/assets/l'

1-12

Fomm PCTASA/210 (cominuation of second sheet) (July 1992)

___0211390A3_I_>

page 2 of 2




‘.



	2002-09-16 Foreign Reference

